Bài 17: Giải bài tập về ánh xạ tuyến tính - Mỵ Vinh Quang
a. Cho ánh xạ f : Rn→ R, chứng minh rằng f là ánh xạ tuyến tính khi và chỉ khi tồn tại
các số a1, a2, . . . , an ∈ R để f (x1, x2, . . . , xn) = a1x1 + a2x2 + . . . + anxnb.
Cho ánh xạ f : Rn→ Rm. Chứng minh rằng f là ánh xạ tuyến tính khi và chỉ khi tồn
tại các số aij ∈ R để
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . θ(uk) = kx k−1 = 0uo + 0u1 + . . .+ kuk−1 + . . .+ 0un . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . θ(un) = nx n−1 = 0uo + 0u1 + . . . . . . . . .+ nun−1 + 0un Vậy Af/(u) = 0 1 0 . . . 0 . . . 0 0 0 2 . . . 0 . . . 0 0 0 0 . . . 0 . . . 0 ... ... ... ... ... ... ... ... k ... ... ... ... ... ... 0 0 0 . . . 0 . . . n 0 0 0 . . . 0 . . . 0 b. Lời giải tương tự câu a., chi tiết xin dành cho bạn đọc. 5. Cho ánh xạ tuyến tính f : R4 → R3 f(x1, x2, x3, x4) = (x1 − x2 + x3, 2x1 + x4, 2x2 − x3 + x4) Tìm cơ sở, số chiều của Ker f, Im f 4 Giải. • (x1, x2, x3, x4) ∈ Ker f ⇔ f(x1, x2, x3, x4) = 0,⇔ (x1, x2, x3, x4) là nghiệm của hệ x1 − x2 + x3 = 0 2x1 + x4 = 0 2x2 + x3 + x4 = 0 (1) Do đó, Ker f chính là không gian con các nghiệm của hệ (1) và hệ nghiệm cơ bản của hệ (1) chính là một cơ sở của Ker f . Để giải hệ (1), ta biến đổi ma trận hệ số mở rộng: 1 −1 1 0 02 0 0 1 0 0 2 1 1 0 −→ 1 −1 1 0 00 2 −2 1 0 0 2 1 1 0 −→ 1 −1 1 0 00 2 −2 1 0 0 0 3 0 0 Hệ có vô số nghiệm phụ thuộc 1 tham số là x4. Ta có x3 = 0 x2 = 1 2 (2x3 − x4) = −12x4 x1 = x2 − x3 = x2 = −12x4 Vậy nghiệm tổng quát của hệ là: x1 = −a x2 = −a x3 = 0 x4 = 2a hệ nghiệm cơ bản α1 = (−1,−1, 0, 2), do đó, dimKer f = 1, cơ sở của Ker f là α1 = (−1,−1, 0, 2). • Để tìm cơ sở của Im f , ta tìm ảnh của cơ sở chính tắc của R4. Ta có: f(e1) = (1, 2, 0), f(e2) = (−1, 0, 2), f(e3) = (1, 0,−1), f(e4) = (0, 1, 1) Im f = 〈f(e1), f(e2), f(e3), f(e4)〉 Hệ con ĐLTT tối đại của f(e1), f(e2), f(e3), f(e4) là một cơ sở của Im f . Ta có 1 2 0 −1 0 2 1 0 −1 0 1 1 1 2 3 4 −→ 1 2 0 0 2 2 0 −2 −1 0 1 1 1 2 3 4 −→ 1 2 0 0 1 1 0 −2 −1 0 2 2 1 2 3 4 −→ 1 2 0 0 1 1 0 0 1 0 0 0 1 2 3 4 Vậy cơ sở của Im f là f(e1), f(e4), f(e3) và dim f = 3. 5 6. Tìm vectơ riêng, giá trị riêng, chéo hóa các ma trận sau: (a) 1 0 10 0 0 1 0 1 (b) 5 −1 1−1 2 −2 1 −2 2 (c) 1 2 12 4 2 1 2 1 (d) 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 (e) 1 3 1 2 0 −1 1 3 0 0 2 5 0 0 0 −2 Giải. b) Tìm đa thức đặc trưng: PA(λ) = ∣∣∣∣∣∣ 5− λ −1 1 −1 2− λ −2 1 −2 2− λ ∣∣∣∣∣∣ = (5− λ)(2− λ)2 + 2 + 2− (2− λ)− 4(5− λ)− (2− λ) = −λ3 + 9λ2 − 18λ PA(λ) = 0⇔ λ = 0, λ = 3, λ = 6. Vậy A có 3 giá trị riêng là λ = 0, λ = 3, λ = 6. • Vectơ riêng ứng với giá trị riêng λ = 0 là các vectơ nghiệm khác không của hệ: 5 −1 1−1 2 −2 1 −2 2 ∣∣∣∣∣∣ 0 0 0 −→ −1 2 −25 −1 1 1 −2 2 ∣∣∣∣∣∣ 0 0 0 −→ −1 2 −20 −11 11 0 0 0 ∣∣∣∣∣∣ 0 0 0 Hệ có vô số nghiệm phụ thuộc một tham số là x3. Ta có: x3 = a, x2 = a, x1 = 0. Nghiệm của hệ là tất cả các vectơ dạng (0, a, a), a ∈ R. Do đó, vectơ riêng ứng với giá trị riêng λ = 0 là các vectơ có dạng (0, a, a), a 6= 0, dimV0 = 1. Cơ sở của V0 là α1 = (0, 1, 1). • Vectơ riêng ứng với giá trị riêng λ = 3 là các vectơ nghiệm khác không của hệ: 2 −1 1−1 −1 −2 1 −2 −1 ∣∣∣∣∣∣ 0 0 0 −→ 1 −2 −1−1 −1 −2 2 −1 1 ∣∣∣∣∣∣ 0 0 0 −→ 1 −2 −10 −3 −3 0 3 3 ∣∣∣∣∣∣ 0 0 0 −→ 1 −2 −10 −3 −3 0 0 0 ∣∣∣∣∣∣ 0 0 0 Hệ có vô số nghiệm phụ thuộc một tham số là x3. 6 Ta có: x3 = b, x2 = −b, x1 = 2x2 + x3 = −b. Nghiệm của hệ là tất cả các vectơ dạng (−b,−b, b), b ∈ R. Do đó, vectơ riêng ứng với giá trị riêng λ = 3 là các vectơ có dạng (−b,−b, b), b 6= 0, dimV3 = 1. Cơ sở của V3 là α2 = (−1,−1, 1). • Vectơ riêng ứng với giá trị riêng λ = 6 là các vectơ nghiệm khác không của hệ: −1 −1 1−1 −4 −2 1 −2 −4 ∣∣∣∣∣∣ 0 0 0 −→ −1 −1 10 −3 −3 0 −3 −3 ∣∣∣∣∣∣ 0 0 0 −→ −1 −1 10 −3 −3 0 0 0 ∣∣∣∣∣∣ 0 0 0 Hệ có vô số nghiệm phụ thuộc một tham số là x3. Ta có: x3 = c, x2 = −c, x1 = −x2 + x3 = 2c. Nghiệm của hệ là tất cả các vectơ dạng (2c,−c, c), c ∈ R. Do đó, vectơ riêng ứng với giá trị riêng λ = 6 là các vectơ có dạng (2c,−c, c), c 6= 0, dimV6 = 1. Cơ sở của V0 là α3 = (2,−1, 1). Chéo hóa. Tổng hợp 3 trường hợp trên ta thấy ma trận A có 3 vectơ riêng độc lập tuyến tính. Do đó A chéo hóa được. Ma trận T cần tìm là: T = 0 −1 21 −1 −1 1 1 1 và T−1AT = 0 0 00 3 0 0 0 6 là ma trận chéo. d) Tìm đa thức đặc trưng PA(λ) = ∣∣∣∣∣∣∣∣ 1− λ 0 0 0 0 −λ 0 0 0 0 −λ 0 1 0 0 1− λ ∣∣∣∣∣∣∣∣ = λ 2(1− λ)2 PA(λ) = 0⇔ λ = 0, λ = 1. Vậy ma trận A có 2 giá trị riêng là λ = 0, λ = 1. • Vectơ riêng ứng với giá trị riêng λ = 0 là các vectơ nghiệm khác không của hệ: 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 ∣∣∣∣∣∣∣∣ 0 0 0 0 −→ 1∗ 0 0 0 0 0 0 1∗ 0 0 0 0 0 0 0 0 ∣∣∣∣∣∣∣∣ 0 0 0 0 Hệ có vô số nghiệm phụ thuộc hai tham số là x2, x3. Ta có: x2 = a, x3 = b, x4 = 0, x1 = 0. Nghiệm của hệ là tất cả các vectơ dạng (0, a, b, 0), a, b ∈ R. Do đó, vectơ riêng ứng với giá trị riêng λ = 0 là các vectơ có dạng (0, a, b, 0), a2 + b2 6= 0, dimV0 = 2. Cơ sở của V0 là α1 = (0, 1, 0, 0), α2 = (0, 0, 1, 0). 7 • Vectơ riêng ứng với giá trị riêng λ = 1 là các vectơ nghiệm khác không của hệ: 0 0 0 0 0 −1 0 0 0 0 −1 0 1 0 0 0 ∣∣∣∣∣∣∣∣ 0 0 0 0 −→ 1 0 0 0 0 −1 0 0 0 0 −1 0 0 0 0 0 ∣∣∣∣∣∣∣∣ 0 0 0 0 Hệ có vô số nghiệm phụ thuộc tham số là x4. Ta có: x4 = c, x3 = 0, x2 = 0, x1 = 0. Nghiệm của hệ là tất cả các vectơ dạng (0, 0, 0, c), c ∈ R. Do đó, vectơ riêng ứng với giá trị riêng λ = 1 là các vectơ có dạng (0, 0, 0, c), c 6= 0, dimV1 = 1. Cơ sở của V1 là α3 = (0, 0, 0, 1). Chéo hóa. Tổng hợp 3 trường hợp trên ta thấy ma trận A chỉ có 3 vectơ riêng độc lập tuyến tính trong khi A là ma trận cấp 4 nên A không chéo hóa được. 7. Trong R3 cho cơ sở: u1 = (1, 1, 1), u2 = (−1, 2, 1), u3 = (1, 3, 2) và cho ánh xạ tuyến tính f : R3 → R3 xác định bởi: f(u1) = (0, 5, 3) f(u2) = (2, 4, 3) f(u3) = (0, 3, 2) Tìm một cơ sở để ma trận của f trong cơ sở đó là ma trận chéo. Giải. Đầu tiên ta tìm ma trận của f trong cơ sở nào đó của R3. Vì èề đã cho f(u1), f(u2), f(u3) nên dễ nhất là tìm ma trận của f trong cơ sở (u). Bạn đọc có thể dễ dàng tìm được: Af/(u) = 0 1 11 0 1 1 1 0 Bước tiếp theo, ta tìm giá trị riêng và vectơ riêng của ma trận A = Af/(u) . Từ đó sẽ tìm được giá trị riêng và vectơ riêng của f . Các giá trị riêng, vectơ riêng của ma trận A = 0 1 11 0 1 1 1 0 , ta đã tìm trong phần lý thuyết. Kết quả tóm tắt như sau: • A có hai giá trị riêng là λ = −1 và λ = 2. • Các vectơ riêng ứng với giá trị riêng λ = −1 là các vectơ (−a − b, a, b), a2 + b2 6= 0. Trường hợp này A có hai vectơ riêng độc lập tuyến tính là α1 = (−1, 1, 0), α2 = (−1, 0, 1). • Các vectơ riêng ứng với giá trị riêng λ = 2 là các vectơ (c, c, 0), c 6= 0. Trường hợp này A có một vectơ riêng độc lập tuyến tính là α3 = (1, 1, 1). Từ đó suy ra: • f có hai giá trị riêng là λ = −1 và λ = 2. • Các vectơ riêng ứng với giá trị riêng λ = −1 là các vectơ dạng (−a−b)u1+au2+bu3 = (−2a, a+ 2b, b), a2 + b2 6= 0. Trường hợp này f có hai vectơ riêng độc lập tuyến tính là: β1 = −1.u1 + 1.u2 + 0.u3 = (−2, 1, 0) β2 = −1.u1 + 0.u2 + 1.u3 = (0, 2, 1) 8 • Các vectơ riêng ứng với giá trị riêng λ = 2 là các vectơ dạng c.u1 + c.u2 + c.u3 = (c, 6c, 4c), c 6= 0. Trường hợp này f có một vectơ riêng độc lập tuyến tính là: β3 = 1.u1 + 1.1.u2 + 1.u3 = (1, 6, 4) Kết luận. Vì f là phép biến đổi tuyến tính của R3 (dimR3 = 3) và f có 3 vectơ riêng độc lập tuyến tính là β1, β2, β3 nên β1, β2, β3 (β) chính là cơ sở của R3 cần tìm và ta có: Af/(β) = −1 0 00 −1 0 0 0 2 8. Cho phép biến đổi tuyến tính ϕ : V → V thỏa mãn ϕ2 = ϕ. Chứng minh: (a) Imϕ+Kerϕ = V (b) Imϕ ∩Kerϕ = {0} Giải. a) Tất nhiên Imϕ+Kerϕ ⊂ V , ta cần chứng minh: V ⊂ Imϕ+Kerϕ. Với mọi α ∈ V , ta có: α = ϕ(α) + (α− ϕ(α)) Tất nhiên ϕ(α) ∈ Imϕ, và ϕ(α − ϕ(α)) = ϕ(α) − ϕ2(α) = ϕ(α) − ϕ(α) = 0. Do đó, α− ϕ(α) ∈ Kerϕ ⇒ α ∈ Imϕ+Kerϕ, và Imϕ+Kerϕ = V . b) Giả sử β ∈ Imϕ ∩Kerϕ. Khi đó tồn tại α ∈ V để ϕ(α) = β. Theo giả thiết ϕ2 = ϕ nên ta có: β = ϕ(α) = ϕ2(α) = ϕ(ϕ(α)) = ϕ(β) = 0 (vì β ∈ Kerϕ). Vậy β ∈ Imϕ ∩Kerϕ thì β = 0. Do đó, Imϕ ∩Kerϕ = {0}. 9. Cho f : V → V là ánh xạ tuyến tính, L là không gian vectơ con của V . Chứng minh: (a) dimL− dimKer f ≤ dim f(L) ≤ dimL. (b) dimL ≤ dim f−1(L) ≤ dimL+ dimKer f . Giải. Để giải bài tập 9 và bài tập 10, ta cần nhớ kết quả sau (đã chứng minh trong phần lý thuyết): Nếu ϕ : V → U là ánh xạ tuyến tính thì ta có: dim Imϕ+ dimKerϕ = dimV a) Xét ánh xạ f¯ : L→ V , f¯ = f |L, tức là f¯(α) = f(α) với mọi α ∈ L. Ta có Im f¯ = f¯(L) = f(L), Ker f¯ = L ∩Ker f . Áp dụng kết quả trên với ϕ = f¯ , ta có: dim Im f¯ + dimKer f¯ = dimL Do đó, dim f(L) = dim Im f¯ ≤ dimL và dim f(L) = dimL− dimKer f¯ ≥ dimL− dimKer f b) Đặt L′ = f−1(L). Khi đó f(L′) = L. Áp dụng a) với không gian vectơ con L′, ta có: dimL′ − dimKer f ≤ dim f(L′) ≤ dimL′ tức là dim f−1(L)− dimKer f ≤ dimL ≤ dim f−1(L) 9 Do đó: dimL ≤ dim f−1(L) ≤ dimL+ dimKer f 10. Cho ϕ : V → W , ψ : W → U là ánh xạ tuyến tính. Chứng minh: (a) rank(ψϕ) ≤ min{rankψ, rankϕ} (b) rank(ψϕ) = rankϕ− dim(Kerψ ∩ Imϕ) (c) rank(ψϕ) ≥ rank kϕ+ rank− dimW Giải. a) Áp dụng câu a) bài 9 cho ánh xạ tuyến tính ψ : W → U với L = Imϕ = ϕ(V ) ⊂ W , ta có: dimϕ(V ) ≥ dimψ(ϕ(V )) = dim(ψϕ)(V ) = dim Im(ψϕ) Vậy ta có: rank(ψϕ) ≤ rankϕ (1) Mặt khác, ta có: ϕ(V ) ⊂ W nên ψ(ϕ(V )) ⊂ ψ(W ), do đó dimψϕ(V ) ≤ dimψ(W ), tức là: rankψϕ ≤ rankψ (2). Từ (1) và (2) ta có điều cần chứng minh. b) Xét ánh xạ ψ¯ : Imϕ→ U , ψ¯ = ψ|Imϕ, tức là ψ¯(α) = ψ(α) với mọi α ∈ Imϕ. Khi đó, Ker ψ¯ = Kerψ ∩ Imϕ và Im ψ¯ = ψ¯(Imϕ) = ψ(Imϕ) = (ψϕ)(V ) = Imψϕ, tức là: dim Im(ψϕ) + dim(Kerψ ∩ Imϕ) = dim Imϕ. Do vậy, rank(ψϕ) = rankϕ− dim(Kerψ ∩ Imϕ). c) Ta có: dimKerψ + dim Imψ = dimW nên dimKerψ = dimW − rankψ. Bởi vậy, theo câu b) rank(ψϕ) = rankϕ− dim(Kerψ ∩ Imϕ) ≥ rankϕ− dimKerψ = rankϕ− (dimW − rankψ) = rankϕ+ rankψ − dimW. 1 1Đánh máy: LÂM HỮU PHƯỚC, TRẦN ĐỨC THUẬN Ngày: 09/03/2006 10
File đính kèm:
- Mr Quang (17).pdf