Bài 18: Không gian vectơ Euclide - Mỵ Vinh Quang
Chú ý rằng, do tính chất i), ii). Khi cố định vectơ β ∈ V , tích vô hướng là một ánh xạ tuyến
tính đối với biến thứ nhất. Do tính chất đối xứng (giao hoán) iii), ta dễ dàng suy ra khi cố định
α ∈ V , thì tích vô hướng là một ánh xạ tuyến tính đối với biến thứ 2, tức là: α, β, β1, β2 ∈ V ,a ∈ R ta có:
β2 = α2 − 〈α2, β1〉〈β1, β1〉β1 ... βm = αm − m−1∑ i=1 〈αm, βi〉 〈βi, βi〉 βi là hệ vectơ trực giao, độc lập tuyến tính trong E, và 〈α1, . . . , αm〉 = 〈β1, . . . , βm〉 Phép chuyển từ hệ vectơ α1, . . . , αm sang hệ vectơ trực giao β1, . . . , βm như trên gọi là phép trực giao hóa hệ vectơ α1, . . . , αm. • Chú ý 4 – Nếu α1, . . . , αm là cơ sở của không gian vectơ con U của không gian vectơ Euclide E, (U = 〈α1, . . . , αm〉), trực giao hóa hệ vectơ α1, . . . , αm ta được hệ vectơ trực giao β1, . . . , βm và U = 〈α1, . . . , αm〉 = 〈β1, . . . , βm〉. Do đó, β1, . . . , βm chính là cơ sở trực giao của U . – Từ chú ý trên, một không gian Euclide E luôn có cơ sở trực chuẩn. Thật vậy, để tìm cơ sở trực chuẩn của E, đầu tiên ta tìm một cơ sở α1, . . . , αm bất kỳ của E, sau đó trực giao hóa cơ sở trên ta được cơ sở trực giao β1, . . . , βm của E. Cuối cùng, trực chuẩn hóa cơ sở trực giao β1, . . . , βm, ta sẽ được cơ sở trực chuẩn u1, . . . , um của E. Cũng lưu ý bạn đọc rằng, trong quá trình trực giao hóa hệ vectơ α1, . . . , αm, để đơn giản cho quá trình tính toán, ta có thể thay vectơ βi bởi một vectơ tỷ lệ với βi. Sau đây là một ví dụ: • Ví dụ Trong không gian vetơ Euclide R4, cho không gian vectơ con U sinh bởi các vectơ: α1 = (0, 1, 0, 1) α2 = (0, 1, 1, 0) α3 = (1, 1, 1, 1) α4 = (1, 2, 1, 2) (U = 〈α1, α2, α3, α4〉) Tìm một cơ sở trực chuẩn của U . Giải Để tìm cơ sở trực chuẩn của U , đầu tiên ta tìm một cơ sở của U . Hệ con độc lập tuyến tính tối đại của α1, α2, α3, α4 là một cơ sở của U . Từ đó ta có α1, α2, α3 là một cơ sở của U . Tiếp theo, trực giao hóa hệ vectơ α1, α2, α3 để được một cơ sở trực giao của U . Ta có: β1 = α1 = (0, 1, 0, 1) β2 = α2 − 〈α2, β1〉〈β1, β1〉β1 = (0, 1, 1, 0)− 1 2 (0, 1, 0, 1) = ( 0, 1 2 , 1,−1 2 ) Để phép tính tiếp theo đơn giản hơn, ta có thể chọn β2 = (0, 1, 2,−1). β3 = α3− 〈α3, β1〉〈β1, β1〉β1 〈α3, β2〉 〈β2, β2〉β2 = (1, 1, 1, 1)− 2 2 (0, 1, 0, 1)− 2 6 (0, 1, 2,−1) = ( 1,−1 3 , 1 3 , 1 3 ) Để đơn giản, ta có thể chọn β3 = (3,−1, 1, 1). Vậy cơ sở trực giao của U là: β1 = (0, 1, 0, 1) β2 = (0, 1, 2,−1) β3 = (3,−1, 1, 1) Trực chuẩn hóa cơ sở trực giao β1, β2, β3, ta được cơ sở trực chuẩn của U là: 5 e1 = ( 0, 1√ 2 , 0, 1√ 2 ) e2 = ( 0, 1√ 6 , 2√ 6 , −1√ 6 ) e3 = ( 3 2 √ 3 , −1 2 √ 3 , 1 2 √ 3 , 1 2 √ 3 ) 3 Hình chiếu trực giao và đường trực giao 3.1 Định lý - Định nghĩa Cho E là không gian vectơ Euclide, và U là không gian vectơ con của E. Khi đó mỗi vectơ α ∈ E đều viết được duy nhất dưới dạng: α = α′ + β trong đó α′ ∈ U và β ⊥ U . Vectơ α′ gọi là hình chiếu trực giao của vectơ α lên U , còn β = α − α′ là đường trực giao hạ từ α xuống U . Chứng minh Giả sử e1, . . . , ek là một cơ sở trực chuẩn của U . Vì α ′ ∈ U nên α′ có dạng: α′ = x1e1 + · · ·+ xkek Ta cần tìm x1, . . . , xk để β = α− α′ ⊥ U . β = α− α′ ⊥ U ⇔ α− α′ ⊥ ej, ∀j = 1, 2, . . . , k ⇔ 〈α− α′, ej〉 = 0 ⇔ 〈α, ej〉 − 〈α′, ej〉 = 0 ⇔ 〈α, ej〉 − 〈 k∑ i=1 xiei, ej 〉 = 0 ⇔ 〈α, ej〉 − xj = 0 ⇔ xj = 〈α, ej〉 Vậy vectơ α′ xác định duy nhất bởi α′ = k∑ j=1 〈α, ej〉.ej trong đó e1, . . . , ek là một cơ sở trực chuẩn của U , còn vectơ β xác định bởi β = α− α′. 3.2 Cách tìm hình chiếu trực giao Cho không gian vectơ Euclide E, và U là không gian vectơ con của E. Cho vectơ α ∈ E. Để tìm hình chiếu trực giao của vectơ α lên U , ta có thể tìm bằng hai cách sau: 6 1. Cách 1. Tìm một cơ sở trực chuẩn e1, e2, . . . , ek của U . Khi đó hình chiếu trực giao α ′ của vectơ α xác định bởi công thức: α′ = 〈α, e1〉.e1 + 〈α, e2〉.e2 ++ · · ·+ 〈α, ek〉.ek 2. Giả sử u1, . . . , uk là cơ sở bất kỳ của U . Vì α ′ ∈ U nên α′ = x1u1 + · · · + xkuk. Ta cần tìm x1, . . . , xk để vectơ α− α′ ⊥ U . α− α′ ⊥ U ⇔ α− α′ ⊥ uj với j = 1, 2, . . . , k ⇔ 〈α′, uj〉 = 〈α, uj〉 ⇔ x1〈u1, uj〉+ x2〈u2, uj〉+ · · ·+ xk〈uk, uj〉 = 〈α, uj〉 Lần lượt cho j = 1, 2, . . . , k, ta có x1, . . . , xk là nghiệm của hệ phương trình sau: 〈u1, u1〉x1 + 〈u2, u1〉x2 + · · ·+ 〈uk, u1〉xk = 〈α, u1〉 〈u1, u2〉x1 + 〈u2, u2〉x2 + · · ·+ 〈uk, u2〉xk = 〈α, u2〉 ... 〈u1, u1〉xk + 〈u2, uk〉x2 + · · ·+ 〈uk, uk〉xk = 〈α, uk〉 (∗) Như vậy, để tìm hình chiếu α′ của α lên U , ta cần tìm một cơ sở u1, . . . , uk của U , sau đó lập hệ phương trình (∗). Giải hệ (∗) ta sẽ có nghiệm duy nhất (x1, . . . , xk). Khi đó: α′ = x1u1 + · · ·+ xkuk. Ví dụ Trong không gian Euclide R4 cho không gian vectơ con U sinh bởi các vectơ: α1 = (0, 1, 0, 1) α2 = (0, 1, 1, 0) α3 = (1, 1, 1, 1) α4 = (1, 2, 1, 2) (U = 〈α1, α2, α3, α4〉) Tìm hình chiếu trực giao của vectơ x = (1, 1, 0, 0) lên U . Giải Cách 1 : Đầu tiên ta tìm một cơ sở trực chuẩn của U . Ở ví dụ trước ta đã tìm được một cơ sở trực chuẩn của U là: e1 = ( 0, 1√ 2 , 0, 1√ 2 ) e2 = ( 0, 1√ 6 , 2√ 6 , −1√ 6 ) e3 = ( 3 2 √ 3 , −1 2 √ 3 , 1 2 √ 3 , 1 2 √ 3 ) Do đó, hình chiếu trực giao của x là: x′ = 〈x, e1〉e1 + 〈x, e2〉e2 + 〈x, e3〉e3 = 1√ 2 e1 + 1√ 6 e2 + 1√ 3 e3 7 =( 1 2 , 1 2 , 1 2 , 1 2 ) Cách 2 : Đầu tiên tìm một cơ sở của U . Dễ thấy α1, α2, α3 là một cơ sở của U . Sau đó lập hệ phương trình dạng (∗). Ta có: 〈α1, α1〉 = 2 〈α2, α1〉 = 1 〈α3, α1〉 = 2 〈x, α1〉 = 1 〈α2, α2〉 = 2 〈α3, α2〉 = 2 〈x, α2〉 = 1 〈α3, α3〉 = 4 〈x, α3〉 = 2 Do đó, hệ phương trình (∗) trong trường hợp này có dạng: 2x1 + x2 + 2x3 = 1 x1 + 2x2 + 2x3 = 1 2x1 + 2x2 + 4x3 = 2 Đây là hệ Cramer, giải hệ này ta có x1 = 0, x2 = 0, x3 = 1 2 . Do đó, hình chiếu trực giao của vectơ x là: x′ = 0α1 + 0α2 + 1 2 α3 = ( 1 2 , 1 2 , 1 2 , 1 2 ) 3.3 Định nghĩa Cho U là không gian vectơ con của không gian Euclide E và α là vectơ thuộc E. Khi đó góc giữa hai vectơ α và hình chiếu trực giao α′ cũng được gọi là góc giữa vectơ α và không gian con U . Độ dài của đường thẳng trực giao β = α − α′ từ α đến U gọi là khoảng cách từ vectơ α đến U . 4 Phép biến đổi trực giao và phép biến đổi đối xứng 4.1 Hai không gian Euclide đẳng cấu Cho hai không gian vectơ Euclide E1 với tích vô hướng 〈 , 〉1 và E2 với tích vô hướng 〈 , 〉2. Ta nói E1 đẳng cấu với E2, ký hiệu E1 ∼= E2 nếu tồn tại đẳng cấu giữa hai không gian vectơ f : E1 → E2 thỏa: ∀α, β ∈ E1, 〈α, β〉1 = 〈f(α), f(β)〉2 Quan hệ đẳng cấu là một quan hệ tương đương và ta có kết quả sau: Định lý. Hai không gian Euclide đẳng cấu khi và chỉ khi chúng có cùng số chiều. 8 Chứng minh Nếu E1 ∼= E2 thì theo định nghĩa E1, E2 là các không gian vectơ đẳng cấu nên dimE1 = dimE2. Ngược lại, giả sử dimE1 = dimE2 = n và α1, . . . , αn (α), β1, . . . , βn (β) lần lượt là cơ sở trực chuẩn của E1 và E2. Khi đó tồn tại ánh xạ tuyến tính f : E1 → E2, f(αi) = βi, i = 1, 2, . . . , n. Vì f biến cơ sở thành cơ sở nên f là đẳng cấu không gian vectơ. Ta chứng minh 〈x, y〉1 = 〈f(x), f(y)〉2. Thật vậy, ∀x, y ∈ E1, ta có: x = n∑ i=1 xiαi y = n∑ j=1 yiαj Khi đó: 〈x, y〉1 = 〈∑ xiαi, ∑ yjαj 〉 1 = ∑ i,j xiyj〈αi, αj〉1 = n∑ i=1 xiyi 〈f(x), f(y)〉2 = 〈 f( ∑ xi, αi), f( ∑ yjαj) 〉 2 = 〈∑ xif(αi), ∑ yjf(αj) 〉 2 = 〈∑ xiβi), ∑ yjβj 〉 2 = ∑ xiyj〈βi, βj〉2 = n∑ i=1 xiyi Vậy 〈x, y〉1 = 〈f(x), f(y)〉2 và E1 ∼= E2. 4.2 Phép biến đổi trực giao 4.2.1 Ma trận trực giao Ma trận vuông A gọi là ma trận trực giao nếu A−1 = At (At: ma trận chuyển vị của A). 4.2.2 Định nghĩa Cho E là không gian vectơ Euclide. Một phép biến đổi tuyến tính f của E gọi là phép biến đổi trực giao của E nếu f bảo toàn tích vô hướng, tức là: ∀α, β ∈ E, 〈α, β〉 = 〈f(α), f(β)〉 Dễ thấy, phép biến đổi trực giao là một song ánh vì: f(α) = 0⇔ 〈f(α), f(α)〉 = 0⇔ 〈α, α〉 = 0⇔ α = 0 Tính chất cơ bản nhất của phép biến đổi trực giao được cho trong định lý sau. 9 4.2.3 Định lý Cho f là phép biến đổi tuyến tính của không gian vectơ Euclide E. Khi đó các khẳng định sau tương đương: 1. f là phép biến đổi trực giao. 2. f biến cơ sở trực chuẩn của E thành cơ sở trực chuẩn của E. 3. Ma trận của f trong một cơ sở trực chuẩn là ma trận trực giao. Chứng minh 1)⇒ 2) Giả sử e1, . . . , en là cơ sở trực chuẩn của E. Khi đó: 〈ei, ej〉 = δij = { 1 nếu i = j 0 nếu i 6= j Vì f là phép biến đổi trực giao, nên: 〈f(ei), f(ej)〉 = 〈ei, ej〉 = δij = { 1 nếu i = j 0 nếu i 6= j Do đó, f(e1), . . . , f(en) là cơ sở trực chuẩn. 2)⇒ 3) Ma trận của f trong cơ sở trực chuẩn e1, . . . , en theo định nghĩa chính là ma trận đổi cơ sở từ e1, . . . , en sang cơ sở trực chuẩn f(e1), . . . , f(en). Vì ma trận đổi cơ sở giữa hai cơ sở trực chuẩn là ma trận trực giao (xem bài tập 10) nên ma trận của f trong cơ sở trực chuẩn là ma trận trực giao. 3)⇒ 1) Giả sử e1, . . . , en (e) là cơ sở trực chuẩn của E và A = Af/(e) là ma trận trực giao (At = A−1). Với α, β ∈ E, α = a1e1 + · · ·+ anen, β = b1e1 + · · ·+ bnen Khi đó, 〈α, β〉 = [α]t/(e) [β]/(e) = [α]t/(e)I[β]/(e) = [α]t/(e)A −1A[β]/(e) = [α]t/(e)A tA[β]/(e) = (A[α]/(e)) t (A[β]/(e)) = [f(α)]t/(e) .[f(β)]/(e) = 〈f(α), f(β)〉 4.3 Phép biến đổi đối xứng 4.3.1 Định nghĩa Cho E là không gian vectơ Euclide. Phép biến đổi tuyến tính f của E gọi là phép biến đổi đối xứng nếu ∀α, β ∈ E : 〈f(α), β〉 = 〈α, f(β)〉. 10 4.3.2 Định lý Một phép biến đổi tuyến tính của E là phép biến đổi đối xứng khi và chỉ khi ma trận của f trong một cơ sở trực chuẩn là ma trận đối xứng. Chứng minh Giả sử f : E → E là phép biến đổi tuyến tính, ma trận của f trong cơ sở trực chuẩn e1, . . . , en là A = [aij]. Khi đó: f(ei) = n∑ k=1 akiek Với mọi i, j ta có: 〈f(ei), ej〉 = 〈 n∑ k=1 akiek, ej 〉 = n∑ k=1 aki〈ek, ej〉 = aji 〈ei, f(ej)〉 = 〈 ei, n∑ k=1 akjek 〉 = n∑ k=1 akj〈ei, ek〉 = aij • Nếu f là phép biến đổi đối xứng, thì 〈f(ei), ej〉 = 〈ei, f(ej)〉. Do đó, aji = aij. Vậy ma trận A là ma trận đối xứng. • Nếu ma trận A đối xứng, tức là aji = aij thì 〈f(ei), ej〉 = 〈ei, f(ej)〉 ∀i, j. Nếu α = n∑ i=1 xiei, β = n∑ j=1 yjej của E thì: 〈f(α), β〉 = 〈∑ xif(ei),∑ yjej〉 =∑ i,j xiyj〈f(ei), ej〉 = ∑ i,j xiyj〈ei, f(ej)〉 = 〈∑ xiei, ∑ yjf(ej) 〉 = 〈α, f(β)〉 Vậy f là phép biến đổi đối xứng. 11
File đính kèm:
- Mr Quang (18).pdf