Bài giảng Hình thang

2/ Từ hai điểm A và B của một đường thẳng , về cùng một phía ta dựng hai đoạn thẳng AA1 = a , BB1 = b cùng vuông góc với AB . Chứng minh rằng khi giữ nguyên các đại lượng a và b thì khoảng cách từ giao điểm của AB1 và A1B không phụ thuộc vào vị trí của A và B .

 

doc2 trang | Chia sẻ: hainam | Lượt xem: 1340 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Bài giảng Hình thang, để tải tài liệu về máy bạn click vào nút TẢI VỀ ở trên
HÌNH THANG
1/ Qua giao điểm O của 2 đường chéo của hình thang ABCD ( đáy AB , CD ) vẽ các đường thẳng song song với 2 đáy cắt cạnh bên tại M , N . 
a/Chứng minh : OM = ON .
b/Chứng minh : 
2/ Từø hai điểm A và B của một đường thẳng , về cùng một phía ta dựng hai đoạn thẳng AA1 = a , BB1 = b cùng vuông góc với AB . Chứng minh rằng khi giữ nguyên các đại lượng a và b thì khoảng cách từ giao điểm của AB1 và A1B không phụ thuộc vào vị trí của A và B . 
4/ Cho hình thang ABCD ( AB // CD và AB ¹ CD ) . M và N là trung điểm của các đường chéo AC và BD . Kẻ NH ^ AD ; MH’ ^ BC . Gọi I là giao điểm của MH’ và NH . Chứng minh rằng I cách đều hai điểm C và D . 
5/ Trong hình thang ABCD ( AD // BC ) các đường phân giác trong của các góc A và B cắt nhau tại M , các đường phân giác trong của các góc C và D cắt nhau tại N . Chứng minh rằng độ dài đoạn MN bằng nửa hiệu của tổng độ dài hai đáy với tổng độ dài hai cạnh bên .
6/ Các đường chéo của hình thang ngoại tiếp ABCD ( AD // BC ) cắt nhau tại O . Bán kính đường tròn nội tiếp các D AOD ; D AOB ; D BOC ; D COD lần lượt là r1 , r2 , r3 , r4 . Chứng minh rằng : .
D
HƯỚNG DẪN
K
S1
A
O
H
S4
S2
S3
B
C
Giả sử D AOD ; D AOB ; D BOC ; D COD có diện tích và nửa chu vi lần lượt là S1 , P1 , S2 , P2 , S3 , P3 , S4 , P4 . Vì SABC = SBCD ; SBOC chung nên ta có : S2 = S4 (1) .
	 Þ ; 
P1 + P3 = P2 + P4 (3) ( Vì ABCD là tứ giác ngoại tiếp )
Từ (1) và ( 2 ) : S1.S3 = S22 = S42 Þ 
Do : S = Pr , nên ta có : 
Từ : Û Û 
 Û 
Mặt khác D OAD ~ D OCD nên : 	 hay 	 
 Vì vậy (4) Û 
Û Û 
Û ( Đúng )	 Vậy ( 4 ) đúng do đó : 
HÌNH THANG – CỰC TRỊ
1/ a/ Cho AB = 2a . Vẽ về một phía của AB các tia Ax , By vuông góc với AB . Qua trung điểm M của AB vẽ hai đường thẳng thay đổi luôn vuông góc với nhau và cắt Ax , By theo thứ tự tại C , D . Xác định vị trí của các điểm C , D sao cho D MCD có diện tích nhỏ nhất và tính diện tích nhỏ nhất đó theo a . 
HÌNH THANG VUÔNG - DIỆN TÍCH
	/Cho hình thang vuông ABCD có AB là cạnh đáy nhỏ , CD là cạnh đáy lớn , M là giao điểm của hai đường chéo AC và BD . Biết rằng thang ABCD ngoại tiếp đường tròn bán kính R . Hãy tính diện tích D ADM .
HƯỚNG DẪN
	 A	 E	B
	 H
	M
	 G	 O
 D	 F 	 C
 Gọi O là tâm đường tròn nội tiếp hình thang ABCD . Giả sử các góc tại đỉnh A và D vuông . 
BO , CO là phân giác của góc ABC , BCD Þ OB ^ OC Þ D BOC vuông tại O . Gọi E , F , G , H lần lượt là các điểm tiếp xúc của đường tròn nội tiếp với các cạnh AB , CD , DA , BC của 
hình thang . 
Ta có : OH2 = BH.CH Þ . Do đó M nằm trên đoạn EF . 
Đường cao ứng với đỉnh M của D ADM có độ dài là R và cạnh đáy là 2R , suy ra diện tích tam giác này là R2 . Do diện tích các D ADM , BCM bằng nhau nên trong trường hợp các góc B , C vuông ta cũng có kết quả tương tự .

File đính kèm:

  • docHINH THANG.doc
Bài giảng liên quan