Bài giảng Vật lí Lớp 12 - Khái quát chương 1 - Trường THPT Nguyễn Văn Huyên
DAO ĐỘNG CƠ
1. Thế nào là dao động cơ?
Là chuyển động có giới hạn trong không gian, lặp đi lặp lại nhiều lần quanh một vị trí cân bằng.
2. Dao động tuần hoàn
Là dao động mà sau những khoảng thời gian bằng nhau (chu kì), vật trở lại vị trí cũ theo hướng cũ.
2. Định nghĩa dao động điều hòa:
Dao động điều hòa là dao động mà li độ của vật được mô tả bằng định luật dạng cosin (hay sin) đối với thời gian.
3.PT dao động điều hòa và các đại lượng đặc trưng:
Phương trình ĐDĐH: x = Acos(t + )
TRƯỜNG THPT NGUYỄN VĂN HUYÊN TỔ VẬT LÝ KÝnh chµo c¸c thÇy c« gi¸o Chào các em! Chương 1: DAO ĐỘNG CƠ BÀI 1 : DAO ĐỘNG ĐIỀU HỊA Dao động cơ Phương trình dao động điều hịa Chu kỳ , tần số , tần số gĩc trong dao động điều hịa Vận tốc và gia tốc trong dao động điều hịa Đồ thị trong dao động điều hịa Dao động c ơ ? Cĩ một vị trí cân bằng Vật dao động xung quanh vị trí cân bằng . V ậy Chuyển động qua lại quanh một VTCB g ọi là dđc I. DAO ĐỘNG CƠ I. DAO ĐỘNG CƠ 1. Thế nào là dao động cơ ? Là chuyển động có giới hạn trong không gian , lặp đi lặp lại nhiều lần quanh một vị trí cân bằng . 2. Dao động tuần hoàn Là dao động mà sau những khoảng thời gian bằng nhau ( chu k ì ), vật trở lại vị trí cũ theo hướng cũ . x o M 0 - Xét một chất điểm M chuyển động tròn đều trên một đường tròn tâm O, bán kính A, vận tốc góc . 1.Ví dụ : - Gọi P là hình chiếu của M lên Ox - Ban đầu vật ở vị trí M o xác định bởi góc . - Ở thời điểm t, vật ở vị trí M , xác định bởi góc ( t + ). C M t t+ P 1 P Tọa độ x = OP của điểm P có phương trình : II.Phương trình dao động điều hịa X X’ O C 6 12 9 1. Chuyển động tròn đều và dao động điều hoà : X X’ O C 6 12 9 3 6 12 9 A M t -A A 2. Định nghĩa dao động điều hịa : Dao động điều hịa là dao động mà li độ của vật được mơ tả bằng định luật dạng cosin (hay sin) đối với thời gian . 3. PT dao động điều hịa và các đại lượng đặc trưng : Phương trình ĐDĐH : x = Acos( t + ) O +A -A x 3. Phương trình : Phương trình của dao động điều hòa x : Li độ dao động (m, cm): tọa độ của vật ở thời điểm t A: Biên độ dao động , độ lệch cực đại so với VTCB ( gốc 0) là x max ( A > 0) (m, cm) : Tần số góc ( rad/s ) ( > 0) t + : Pha dao động ( rad ) cho biết trạng thái dđ của vật ở thời điểm t. : Pha ban đầu , có thể dương hoặc âm ( rad ) cho biết trạng thái của vật ở thời điểm t = 0 (ban đầu ) || Trong đĩ III. CHU KỲ. TẦN SỐ. TẦN SỐ GÓC CỦA DAO ĐỘNG ĐIỀU HÒA 1. Chu kì và tần số - Chu kì (T) là khoảng thời gian để vật thực hiện một dao động tồn phần . Đơn vị là (s) - Tần số (f) là số dao động tồn phần thực hiện được trong một giây . Đơn vị là Héc (Hz). - Tần số là đại lượng nghịch đảo của chu kì 2. Tần số gĩc - Trong dao động điều hồ gọi là tần số gĩc . Đơn vị là rad/s . 1.Vận tốc (v): Là đạo hàm của li độ x theo thời gian : v = x’ = - A sin(t +)= A cos(t + + /2) Vận tốc đạt các giá trị : + cực đại v max = A khi : |- sin(t +) | = 1 suy ra cos(t +) = 0 hay x = 0 trùng VTCB. + v min = 0 khi sin(t +) = 0 suy ra cos(t +) = 1 nên x = A ( vị trí biên ) 2. Gia tốc(a):Là đạo hàm của vận tốc nên : a = x’’ = - 2 x Vì vậy a max = 2 A khi x = A ; a min = 0 khi x = 0. IV. VẬN TỐC VÀ GIA TỐC TRONG DAO ĐỘNG ĐIỀU HÒA VI. ĐỒ THỊ TRONG DAO ĐỘNG ĐIỀU HÒA x v a t t t T O O O A -A A -A -A 2 A 2 t 0 T/4 T/2 3T/4 T x A 0 -A 0 A v 0 -A 0 A 0 a -A 2 0 A 2 0 -A 2 v = x’ = - A sin(t +) = A cos(t + + /2) a = x’’ = - 2 x T/4 3T/4 T/2 2 2 2 3 2 5 2 3 2 7 4 2 9 5 11 6 13 2 v min = 0 a max = v min = 0 a max = v max =A A min =0 -A O A Li độ Vận tốc Gia tốc Gia tốc Vận tốc Li độ T T T 2 ( rad ) cos sin t(s ) j w + t a max a max v max v max -A A O Minh họa Đồng hồ 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 2 2 2 3 2 5 2 3 2 7 4 2 9 5 11 6 13 2 v min = 0 a max = v min = 0 a max = v max =A A min =0 -A O A Li độ Vận tốc Gia tốc Gia tốc Vận tốc Li độ T T T 2 ( rad ) cos sin t(s ) j w + t a max a max v max v max -A A O Minh họa Đồng hồ 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 2 2 2 3 2 5 2 3 2 7 4 2 9 5 11 6 13 2 v min = 0 a max = v min = 0 a max = v max =A A min =0 -A O A Li độ Vận tốc Gia tốc Gia tốc Vận tốc Li độ T T T 2 ( rad ) cos sin t(s ) j w + t a max a max v max v max -A A O Minh họa Đồng hồ 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 *. So sánh dao động điều hịa và dđ tuần hồn : Ta thấy dđ tuần hồn là dđ cĩ đặc điểm : x t = x t+T Nhận xét : DĐ điều hịa là DĐ tuần hồn nhưng dao động tuần hồn thì khơng hồn tồn là dđđh . *. Độ lệch pha giữa 2 dao động điều hịa cùng tần số : x 1 = Acos(t + 1 ); x 2 = Acos(t + 2 ); = (t + 2 ) - (t + 1 ) = 2 - 1 ٭ Nếu = 2 - 1 > 0 ta nĩi dđ(2) nhanh pha hơn dđ(1) gĩc hoặc dđ(1) trễ pha hơn dđ(2) gĩc . ٭ Nếu =2k ( = 0): thì ta nĩi 2 dđ cùng pha với nhau . = : 2 dđ ngược pha . = /2: 2 dđ vuơng pha . Là dao động sau một thời gian T(s ) thì vật trở về trạng thái cũ { Trạng thái cũ là cùng vị trí cũ và cùng chiều chuyển động } I-Dao động tuần hồn ? Các đại lượng đặc trưng ? II- Phương trình Động lực học của dao dộng điều hịa ? Con lắc lị xo Phương trình Động học Cĩ nghiệm là một hàm điều hịa : x= Acos ( ω t+ φ ) Tần số gĩc Lực kéo về € k + Chu kỳ T là thời gian thực hiện một dao động tồn phần hay một chu trình + Tần số f(hz ) =1/T là số chu trình thực hiện trong 1(s) x, v, a biến đổi điều hịa cùng tần số f nhưng v nhanh pha hơn x gĩc π /2 a ngược pha với x x CĐ = A; v CĐ = ω A ; a CĐ = ω 2 A Tại VTCB: x=0; a=0; v CĐ hoặc v CT Tại vị trí biên : v=0; a CĐ hoặc a CT x C Đ hoặc x CT Vì : x t = x t+T với T=2 π / ω hay f = ω /2 π Vậy : Dđđh là dao động tuần hồn IV- Các phương pháp biểu diễn DĐĐH ? + Dùng đồ thị ( x,t ) dạng sin + Biểu diễn bằng vetơ quay Hình minh họa ! III-Dao động điều hịa ? Cĩ phải là dao động tuần hồn khơng ? Dao động cĩ phương trình mà vế phải được mơ tả bằng hàm sin hay cosin theo thời gian : x= Acos ( ω t+ φ ) với A>0, ω , φ là 3 hằng số . ( ω t+ φ ): Pha dao động ; φ : Pha ban đầu A= x CĐ =| x CT |>0 : Biên độ dao động Li độ : x= Acos ( ω t+ φ ) Vận tốc : v=x’=- ω Acos ( ω t+ φ + π /2) Gia tốc : a=x”=v’= - ω 2 Acos( ω t+ φ )=- ω 2 x V- Vận tốc và Gia tốc ? Nhận xét ? Lưu ý : sin( ω t+ φ )= cos ( ω t+ φ + π /2) - cos ( ω t+ φ )= cos ( ω t+ φ + π ) Dựa vào tính tuần hồn hay đặc tính của hệ dao động ω Sự kích thích dao động A Điều kiện ban đầu φ V- Lập phương trình dao động điều hịa dựa vào Các yếu tố nào ? +Chu kỳ ( Tại VTCB) + Chiều dài lị xo + Khi A> Δ l : 1 chu kỳ lị xo giản,nén 2 lần Nén từ - Δ l -A ; Giản từ - Δ l A Dựa vào hình vẽ thờiGian nén , giãn ! VI- Đặc điểm của con lắc lị xo treo thẳng đứng ? + Lực đàn hồi ( Khác với lực kéo về ) VII- Các vấn đề cần lưu ý ! + Vận tốc trung bình trong 1 chu kỳ bằng 0 + Tốc độ trung bình v tb = s/t + Tốc độ trung bình trong một chu kỳ v tb =4A/T + Quãng đường vật đi trong T/2 luơn là 2A + Quãng đường vật đi trong thời gian t ? Phân tích : t=nT/2+ Δ t với 0< Δ t<T/2 S 1 =2nA là quãng đường đi trong nT/2 S 2 là quãng đường đi trong Δ t ( dùng giản đồ Fresnel) S=S 1 +S 2 + Thời gian ngằn nhất để vật đi từ x 1 đ ế n x 2 ? Dùng giản đồ Fresnel 1. Gia tốc của một chất điểm dao động điều hịa bằng 0 khi ? A. Li độ cực đại . B. Li độ cực tiểu . C. Vận tốc cực đại hoặc cực tiểu . D.Vận tốc bằng 0 2.Trong dao động điều hịa đại lượng nào sau đây khơng đổi theo thời gian ? A.Tần số . B. Gia tốc . C. Pha dao động . D. Lực kéo về . 3. Một vật dao động điều hịa với biên độ A(cm ), chu kỳ T(s ) theo phương Ox.Thời gian ngắn nhất để vật nặng đi từ VTCB đến li độ x = +A/2 là ? A.T/4 . B. T/6. C. T/12. D. T/3 Củng cố BÀI TẬP VỀ NHÀ + CÁC BÀI TẬP VÀ CÂU HỎI: tr 8-9 SGK + TÀI LIỆU SBT + HỌC BÀI VÀ LÀM BÀI TẬP, GIỜ SAU CHỮA BT. BÀI HỌC ĐẾN ĐÂY LÀ HẾT CHÚC CÁC EM HỌC TỐT VẬT LÝ 12
File đính kèm:
bai_giang_vat_li_lop_12_khai_quat_chuong_1_truong_thpt_nguye.ppt