Bài tập Từ trường của dòng điện không đổi

 Bài 1: Hai dòng điện thẳng dài vô hạn,có cường độ dòng điện I1=I2=5A,được đặt vuông góc với nhau và cách nhau một đoạn AB=2cm.Chiều các dòng điện như hình vẽ.Xác định vectơ cường độ từ trường tại điểm M nằm trong mặt phẳng chứa I1 và vuông góc với I2 ,cách dòng điện I1 một đoạn MA=1 cm.

 

pptx36 trang | Chia sẻ: nbgiang88 | Lượt xem: 12406 | Lượt tải: 2download
Bạn đang xem trước 20 trang tài liệu Bài tập Từ trường của dòng điện không đổi, để xem tài liệu hoàn chỉnh bạn click vào nút TẢI VỀ ở trên
TỪ TRƯỜNG CỦA DÒNG ĐIỆN KHÔNG ĐỔIBÀI TẬP CHƯƠNG 6 Bài_tập_chương_6 Bài 1: Hai dòng điện thẳng dài vô hạn,có cường độ dòng điện I1=I2=5A,được đặt vuông góc với nhau và cách nhau một đoạn AB=2cm.Chiều các dòng điện như hình vẽ.Xác định vectơ cường độ từ trường tại điểm M nằm trong mặt phẳng chứa I1 và vuông góc với I2 ,cách dòng điện I1 một đoạn MA=1 cm. Giải+ Dòng I1 gây ra tại M,từ trường H1 có hướng từ trong ra ngoài. Độ lớn ------------------ H1= = =79,6 (A/m) + Dòng I2 gây ra tại M từ trường H2 có hướng từ dưới lên trên. Độ lớn H2= = = 26,5 (A/m) Bài_Tập_Chương_6AMB+I1I2I1I2Cường độ từ trường tổng hợp có độ lớn: và có chiều từ trong ra ngoài,hợp với H1 góc α có tgα =— = =— suy ra α=18025' Bài_Tập_Chương_6H=== 84 (A/m)H1H2126,579,63 Bài 2: Hình bên vẽ mặt cắt vuông góc của hai dòng điện thẳng song song dài vô hạn ngược chiều nhau.khoảng cách giữa hai dòng điện AB = 10 cm cường độ của các dòng điện lần lược bằng I1=20A,I2=30A.Xác định vectơ cường độ từ trường tổng hợp tại các điểm M1 ,M2 ,M3 Cho biết M1A=2cm,AM2=4cm,BM3=3cm Bài_Tập_Chương_6 Giải Vì hai dòng I1 và I2 song song và ngược chiều nhau nên + Từ trường tại M1: H1= - =119,4 (A/m) +Từ trường tại M2: Bài_tập_chương_6•+I1I2M1M2M3I12π.AM1I2AB2π.BM1H2 = - = 159,2 (A/m)I1I22π.AM2 H1 có chiều hướng từ trên xuống dưới2π.BM2 H2 có chiều hướng từ dưới lên trên+ Từ trường tại M3: H3= - = 135 (A/m) Bài 3: Hai dòng điện thẳng dài vô hạn đặt thẳnggóc với nhau và nằm trong cùng một mặt phẳng (hình vẽ).xác định vectơ từ trường tổng hợp tại các điểm M1 và M2 biết rằng I1=2A,I2=3A, AM1= AM2 = 1cm,BM1=CM2=2cm Bài_tập_chương_6I1H3 có chiều hướng từ dưới lên 2π.BM3I22π.AM3 GiảiHai dòng I1 và I2 gây ra tại M1 và M2 các vectơ cường độĐiện trường vuông góc với Mặt phẳng hình vẽ.+ Tại M1: H1= - = 8 (A/m) H1 hướng theo phương vuông góc với mặt phẳngBài_Tập_Chương_6I1I12π.BM1I22π.AM1M2M1ACBOHình vẽ và có chiều hướng ra phía sau + Tại M2: H2 = + = 56 (A/m) H2 hướng theo phương vuông góc với mặt phẳng hình vẽ theo chiều hướng về trước Bài 4:Một dây dẫn uốn thành một tam giác đều cạnh a=50cm.Trong dây dẫn có dòng điện cường độ I =3,13A chạy qua.Tìm cường độ từ trường tại giao điểm các đường trung tuyến của tam giác đó.Bài_Tập_Chương_6I1I22π.CM2 2π.AM2 Giải Vì tam giác ABC là tam giác đều nên mỗiCạnh của tam giác tạo ra tại tâm Của tam giác một từ trường cùng Độ Lớn và cùng phương chiều Ta có : + GN = . = + cos 01= -cos 02 = (1)Bài_Tập_Chương_6CBAGNa Mặt khác Thay vào (1) ta được + cos 01= -cos 02 = Khi đó: Suy ra Bài_Tập_Chương_6 1 1H = 3H1 = 9 (A/m)(A/m) Bài 5: Một dây dẫn được uốn thành hình thang cân,có dòng điện cường độ I=6.28 A (hình vẽ).Tỷ số chiều dài hai đáy bằng 2.Tìm cảm ứng từ tại điểm A là giao điểm của đường kéo dài của 2 cạnh bên Cho biết: đáy bé của hình thang a=20cm khoảng cách từ A đến đáy bé b=5cm Bài_Tập_Chương_6 Giải Theo định luật Biot-xava-laplace Ta thấy, điện trường do phần tử dòng điện không gây ra tại điểm nằm trên trục của nó dB=0 vì =0 Các cạnh CD và BE không sinh ra từ trường tại A.Các cạnh BC và DE sinh ra từ trường tại A. Bài_Tập_Chương_6αBECDbA03Từ trường hướng theo phương vuông góc với mặt phẳng hình vẽ nhưng ngược chiều nhau.Ta có:Bài_Tập_Chương_60DEBC10221-6220Bài 6:Một dây dẫn dài vô hạn được uốn thành một góc vuông, trên có dòng điện 20A chạy qua. Tìm: a) Cường độ từ trường tại điểm A nằm trên một cạnh góc vuông và cách đỉnh O một đoạn OA=2cm; b) Cường độ từ trường tại điểm B nằm trên phân giác của góc vuông và cách đỉnh O một đoạn OB=10cm.Bài_Tập_Chương_6Từ trường trên trục dây dẫn bằng 0,nên từ trường tại A chỉ do một cạnh góc vuông gây ra.Bài_Tập_Chương_6BAAABài_Tập_Chương_6b) Từ trường do hai cạnh góc vuông gây ra tại B cùng phương,cùng chiều:Thay số ta được: HB =77,3 (A/m)2B1 Bài 7: Hai vòng dây dẫn giống nhau bán kính R =10cm được đặt song song, trục trùng nhau và mặt phẳng của chúng cách nhau một đoạn a=20cm. Dòng điện chạy trong các vòng dây I1=I2=2A. Tìm cường độ từ trường tại âm của mỗi vòng dây và tại điểm giã các đoạn thẳng nối tâm của chúng trong hai trường hợp:a) Các dòng điện chạy trong các vòng dây cùng chiều:b) Các dòng điện chạy trong các vòng dây ngược chiều nhau.Bài_Tập_Chương_6Bài_Tập_Chương_6 Ta có: Cảm ứng từ do vòng dây gây ra tại điểm nằm trên trục của vòng dây bán kính R cách tâm vòng một đoạn h có phương trùng với trục vòng dây Độ lớn: dlh dB I A dB1 dB2RBài_Tập_Chương_6a) Nếu các dòng điện chạy trên các dây là cùng chiều thì B do các vòng dây cùng chiều tại mọi điểm trên trục của các vòng dây. B = B1 + B2 Tại tâm vòng 1 (h1=0,h2=a)và tại tâm vòng 2 (h1=a,h2=0): Thay số ta được BO1 = BO2 =1,37.10-5 (T) O2 O1Bài_Tập_Chương_6 Tại điểm M chính giữa hai vòng dây (h1 = h2 =a/2) 3/2b) Nếu các dòng điện chạy trên dây dân ngược chiều,thì các vectơ cảm ứng từ do hai vòng tạo ra ngược chiều nhau tại mọi điểm trên chục vòng dây: B =|B1- B2| Tại tâm vòng 1(h1=0,h2=a).tại tâm vòng 2 (h1=a,h2=0): Thay số ta được B1 = B2 =1,7.10-5 (T)Bài_Tập_Chương_612 Tại điểm chính giữa hai vòng dây (h1=h2= a/2) suy ra BM = 0Bài_Tập_Chương_6 Bài 8: Một dòng điện I=10A chạy dọc theo thành một ống mỏng hình trụ có bán kính R2= 5cm, sau đó chạy ngược lại qua một dây dẫn đặc bán kính R1= 1mm, đặt trùng với trục của ống. Tìm: a) cảm ứng từ tại các điểm cách trục của ống R1= 6cm và R2= 2cm;b) Từ thông gây ra bởi một đơn vị chiều dài của hệ thống. Coi toàn bộ hệ thống là dài vô hạn và bỏ qua từ trường bên trong kim loại.Bài_Tập_Chương_6 Bài 9:Trong một từ trường đều cảm ứng từ B= 0,1T và trong mặt phẳng vuông góc với các đường sức từ, người ta đặt một dây dẫn uốn thành nửa vòng tròn. Dây dẫn dài s= 63cm, có dòng điện I= 20A chạy qua. Tìm lực tác dụng của từ trường lên dây dẫn.Bài_Tập_Chương_6 Chia dây dẫn thành các đoạn dây có chiều dl rất nhỏ, Ta có: Lực tổng hợp tác dụng lên dây dẫn là:Với là vectơ nối từ điểm đầu tới điểm cuối của dây dẫn (theo chiều dòng điện)Bài_Tập_Chương_6 ^ ^ ^ ^ Lực tổng hợp không phụ thuộc vào hình dạng của dây dẫn mà chỉ phụ thuộc vào đường nối điểm đầu và điểm cuối của dây ở đây là đường kính của nữa đường tròn: Bài_Tập_Chương_6 Bài 10: Một êlectrôn bay vào một từ trường đều cảm ứng từ B= 10-3 T theo phương vuông góc với đường sức từ trường với vận tốc v= 4.107 m/s. Tìm gia tốc tiếp tuyến và gia tốc pháp tuyến của êlectrôn.Bài_tập_chương_6 Do lực lorentz luôn vuông góc với phương chuyển động của điên tích nên gia tốc tiếp tuyến của điện tích trong từ trương luôn bằng 0 Gia tốc pháp tuyến của electron là.Bài_Tập_Chương_6 Bài 11: Một electron có năng lượng W=103 eV bay vào một điện trường đều có cường độ điện trường E=800 V/cm theo hướng vuông góc với đường sức điện trường.Hỏi phải đặt một từ trường có phương chiều và cảm ứng từ như thế nào để chuyển động của electron không bị lệch phương. Bài_Tập_Chương_6Bài_Tập_Chương_6 Muốn cho electron không bị lệch phương thì: ta đặt một từ trường sao cho lực lorentz và lực điện trường triệt tiêu nhau khi tác dụng lên electron khi đó ta chọn chiều của cảm ứng từ như hình vẽ,thì lực lorentz và lực coulomb cùng phương ngược chiều.VE++++BFCFLe Độ lớn: FC = eE = Bve = FL suy ra: Bài_Tập_Chương_6 Bài 12:Một electron bay vào một điện trường với vận tốc v=10m/s.Đường sức điện trường và đường sức từ trường có cùng phương chiều.Cường độ điện trường E=10v/cm, cường độ điện trường H=8.10 A.m .Tìm gia tốc tiếp tuyến,pháp tuyến và gia tốc toàn phần của êlectrôn trong hai trường hợp:a) Êlectrôn chuyển động theo phương chiều của các đường sức từ.b) Êlectrôn chuyển động vuông góc với các đường sức từ.Bài_Tập_Chương_6a) khi electron chuyển động dọc theo phương chiều của đường sức,lực lorentz tác dụng lên nó bằng 0. Điện tích chỉ còn lại gia tốc tiếp tuyến do lực điện gây ra.Bài_Tập_Chương_6b) Khi electron chuyển động theo phương vuông góc với các đường sức,cả lực điện và lực lorentz đều hướng theo phương vuông góc với phương chuyển động(và vuông góc với nhau)nên e chỉ có thành phần gia tốc pháp tuyến:Thay số:a=2,5.1014 (m/s2) Bài_Tập_Chương_6 XIN CHÀO VÀ HẸN GẶP LẠINHÓM 12 XIN CÁM ƠN THẦY VÀ CÁC BẠN

File đính kèm:

  • pptxbai tap tu truong.pptx
Bài giảng liên quan