Chuyên đề Phương pháp nâng cao chất lượng giải toán hình học ở bậc THCS

Toán học nói chung và hình học nói riêng có một vai trò rất quan trọng trong đời sống và trong các nghành khoa học, nó có khả năng rất lớn trong việc phát triển trí tuệ của học sinh thông qua việc rèn luyện các thao tác tư duy lĩnh hội các khái niệm trừu tượng năng lực suy luận logic.

 

ppt21 trang | Chia sẻ: hainam | Lượt xem: 1492 | Lượt tải: 1download
Bạn đang xem trước 20 trang tài liệu Chuyên đề Phương pháp nâng cao chất lượng giải toán hình học ở bậc THCS, để xem tài liệu hoàn chỉnh bạn click vào nút TẢI VỀ ở trên
 những cái cần tìm . Trong quá trình này ta nên sử dụng một lời khuyên của một nhà toán học : “ Hãy thay cái được định nghĩa bằng cái định nghĩa ”. Ví dụ : Bài cho ta một tam giác ABC cân tại A. Ta có thể hiểu tương đương là : - Hai cạnh bên AB = AC - Hai góc ở đáy = - AH đồng thời là đường cao, trung tuyến, trung trực, phân giác .NỘI DUNG - 6* Biểu hiện cụ thể để có thể đánh giá học sinh đã hiểu được đề toán là tóm tắt được đề bài bằng cách biểu diễn đề dưới hình thức giả thiết và kết luận một cách đúng , gọn ghi đề dứơi dạng phục vụ cho đề toán về sau .	* Biểu hiện tiếp nữa là học sinh minh họa được bằng một hình vẽ cụ thể . Hình vẽ phải đúng và chính xác . Học sinh phải hiểu được nếu vẽ được hình , vẽ đúng và chính xác thì sẽ tránh được vài ngộ nhận sẽ dẫn đến kết luận sai với đề cho.	3 . Nắm vững các phương pháp suy luận như suy diễn , quy nạp , tương tự . Nắm vững các thao tác tư duy , như triừ tượng hóa , cụ thể hóa , đặc biệt hóa , khái quát hóa , so sánh , đối chiếu và nhất là phân tích tổng hợp . Phân tích phải hợp với tổng hợp và phân tích để tổng hợp được sâu sắc , đúng đắn , nhanh chóng . 	4 . Học sinh cần biết cách xử lý đối với từng loại bài tập và nắm được những thủ thuật sử dụng cho từng kiểu bài riêng biệt .NỘI DUNG - 7II . Học sinh phải nắm được một số kiểu toán hình học ở bậc THCS sau : 1 . Loại bài chứng minh các tính chất . 1.1 . Chứng minh sự bằng nhau :	1.1.1 . Chứng minh đoạn thẳng bằng nhau :	- Chỉ rõ chúng là những yếu tố tương ứng của các hình bằng nhau ( Ví dụ : cạnh , đường cao , trung tuyến , phân giác … ) 	- Chỉ rõ chúng là các cạnh của tam giác cân , đường trung tuyến thuộc cạnh huyền của tam giác vuông , nửa cạnh huyền .	- Chỉ rõ chúng là các cạnh đối của hình bình hành , hình chữ nhật , hình vuông , hình thoi , các đường chéo hình chữ nhật , hình thang cân , …NỘI DUNG - 8Ví dụ : Cho hình bình hành ABCD. Gọi M là trung điểm của AB, N là trung điểm của DC. Chứng minh DM = CN. GT ABCD là hình bình hành : MA = MB : NC = ND KL DM = BN DM = BN MBND là hbh Dựa vào dấu hiệu nhận biết hbhNỘI DUNG - 9- Chỉ rõ chúng là những khoảng cách từ một điểm trên đường phân giác của một góc đến hai cạnh của góc ấy .	- Chỉ rõ chúng là những giây cung trương các cung bằng nhau hoặc là những tiếp tuyến vẽ từ một điểm đến một đường tròn .	- Chỉ rõ chúng bằng đoạn thứ ba .	1.1.2 . Chứng minh các góc bằng nhau :	- Chĩ rõ chúng là các góc tương ứng trong tứ giác, tam giác bằng nhau .	- Chỉ rõ chúng là các góc ở đáy của hình tam giác cân , hình thang cân , các góc đối của hình bình hành , hình thoi .	- Chỉ rõ chúng là các góc cùng bằng, cùng bù, cùng phụ với góc thứ ba hoăc các góc bằng nhau .	- Chỉ rõ chúng là những góc cùng tù, cùng nhọn, có cạnh tương ứng song song, hoặc vuông góc, chúng là những góc so le trong, đối đỉnh, đồng vị .	- Chỉ rõ chúng là những góc nội tiếp chắn một cung hay hai cung bằng nhau .NỘI DUNG - 10Ví dụ : Cho ( I ; R ) . HE là một dây cung. Trên một cung tròn lấy hai điểm F và G ( F G ) . Chứng minh . 	Khi làm bài tập có dạng nầy thì giáo viên phải cho họcsinh nhắc lại định nghĩa góc nội tiếp, và tính chất góc nội tiếpđể học sinh nhớ lại và vận dụng	- Chỉ rõ chúng có những tỷ số lượng giác bằng nhau .	1.1.3 . Chứng minh hai hình bằng nhau :	- Đưa về việc chứng minh đoạn thẳng bằng nhau và các góc bằng nhau NỘI DUNG - 11 1.2 . Chứng minh tính song song : 1.2.1 . Tạo với một cát tuyến các góc so le trong hoặc so le ngoài bằng nhau , đồng vị bằng nhau hoặc góc trong hay ngoài cùng phía bù nhau . 1.2.2 . Hai đường thẳng cùng song song hoặc cùng vuông góc với đường thẳng thứ ba . 1.2.3 . Đường trung bình của một tam giác , một hình thang đối với cạnh đáy . 1.2.4 . Các cạnh đối của hình bình hành , hình chữ nhật , thoi , vuông . 1.3 . Chứng minh tính vuông góc : 1.3.1 . Chúng là những đường phân giác của hai góc kề bù . 1.3.2 . Các cạnh còn lại của hai góc nhọn ( hoặc tù ) bằng nhau mà đã có một cặp cạnh vuông góc . 1.3.3 . Đường nay song song với một đường thẳng vuông góc với đường kia . 1.3.4 . Chúng là đường chéo của hình vuông , hình thoi . 1.3.5 . Chúng là hai cạch của góc nội tiếp chắn nửa đường tròn . 1.3.6 . Là tiếp tuyến của một đường tròn với bán kính đi qua tiếp điểm . 1.3.7 . Sử dụng tính chất của tam giác vuông : có 1 góc = 1v . Có các cạnh mà độ dài của nó thỏa mãn định lí Pitago. 1.3.8 . Sử dụng tính chất trực tâm trong một tam giác . NỘI DUNG - 12 1.4 . Chứng minh tính đồng quy của ba đường thẳng :	1.4.1 . Chứng minh đường thẳng thứ ba đi qua giao điểm của hai đường thẳng kia .	1.4.2 . Chứng minh chúng là những đường đặc biệt trong một tam giác ( đường cao , trung tuyến … ) .	1.4.3 . Ba đường thẳng định trên hia đoạn thẳng song song những đoạn tương ứng tỷ lệ thì đồng quy . 1.5 . Chứng minh tính thẳng hàng : 	1.5.1 . Chứng minh = 	1.5.2 . Chứng minh AB là đường kính của đường tròn tâm O 1.5.3 . Chứng minh OA , OB cùng song song với một đường thẳng 	1.5.4 . Sử dụng tính chất góc đối đỉnh .	1.5.5 . Chứng minh chúng cùng có những tính chất chung để thuộc về một đường thẳng .NỘI DUNG - 13 1.6 . Chứng minh các tính chất chung của các hình : 	- Quy về việc chứng minh các tính chất trên .2 . Loại bài tính toán các yếu tố 	2.1 . Tính độ dài các đoạn thẳng : Dùng 	2.1.1.Định lý đoạn thẳng tỷ lệ .	2.1.2. Định lý PITAGO .	2.1.3.Tỷ số lượng giác .	2.2 . Tính độ lớn của các góc : Sử dụng 	2.2.1.Tính chất các góc trong tam giác .	2.2.2.Tính chất các góc trong tứ giác .	2.2.3.Định lý về góc ngoài trong một tam giác .	2.2.4.Định lý về góc nội tiếp .	2.2.5.Định lý về góc ở tâm .	2.2.6.Định lý về góc có đỉnh ở trong hay ngoài đường tròn .NỘI DUNG - 14 3 . Loại bài toán quỹ tích 3.1 . Quỹ tích là đường thẳng : 3.1.1 . Những điểm có khoảng cách đến một đường thẳng cố định bằng một độ dài cho trước là hai đường thẳng song song với đường thẳng ấy . 3.1.2 . Quỹ tích những điểm cách đều hai điểm cố định là đường trung trực của đoạn thẳng nối hai điểm ấy . 	3.1.3 . Quỹ tích những điểm cách đều hai cạnh của một góc là đường phân giác của góc ấy . 3.2 . Quỹ tích là đường tròn :	3.2.1 . Quỹ tích những điểm có khoảng cách đến một điểm cố định bằng một độ dài cho trước là đường tròn có tâm là điểm cố định và bán kính bằng độ dài cho trước . 3.2.2 . Quỹ tích những điểm nhìn đoạn AB dưới 1 góc cho trước là hai cung chứa góc a vẽ trên AB . Nếu a = thì quỹ tích là đường tròn đường kinh AB . 3.3. Quỹ tích của một điểm : Quỹ tích một điểm là đưa về một trong năm quỹ tích cơ bản nói trên . 4 . Loại bài toán dựng hình :	1 . Phải nắm được tính chất của hình phải dựng .	2 . Phải nắm được điều kiện để xác định hình đó .NỘI DUNG - 15C . KẾT QUẢ ĐẠT ĐƯỢC.- Vôùi yù töôûng cuûa mình vaø baûn thaân töï maøy moø , saùng taïo , suy nghó ñeå ñöa ra nhöõng höôùng môùi trong giaûng daïy tieát hoïc hình học . Baûn thaân toâi ñaõ thöïc hieän ñöôïc trong nhiều năm vaø treân nhiều khối lớp . Toâi nhaän thaáy raèng daïy tieát giải baøi tập hình học maøà hướng học sinh vaøo baøi toaùn cơ bản maø học sinh ñaõbiết caùch giải laøm cho hoïc sinh hieåu baøi hôn , haêng say hôn , nhôù laâu hôn so vôùi nhöõng tieát khoâng hướng dẫn học sinh đñöa nội dung cần chứng minh về dạng baøi toaùn cơ bản .	- Khi giaûi moät baøi taäp maø hướng dẫn học sinh đưa nội dung cần chứng minh về dạng baøi toaùn cơ bản giaùo vieân toán ít veà thôøi gian giaûi thích nhöõng tình huoáng vaø tieát kieäm thôøi gian vieát leân baûng .Nhöõng thôøi gian ñoù seõ laø phaàn chuaån bò , tranh luaän , giaûng giaûi phaùt bieåu cuûa hoïc sinh . Giuùp hoïc sinh coù yù thöùc töï suy nghó , töï ruùt ra keát luaän cho mình ôû baøi hoïc ñoù. Ñoù cuõng chính laø caùch hoïc , töï hoïc cuûa hoïc sinh theo höôùng tích cöïc .NỘI DUNG - 16* Keát quaû cuï theå :Trong quaù trình giaûng daïy töø naêm 2006 ñeán nay toâi ñaõ aùp duïng giaûi phaùp naày vaøo trong caùc tieát luyeän taäp, oân taäp, tiết tự chọn vaø loàng vaøo trong quaù trình kieåm tra baøi cuõ thì thu ñöôïc moät so á keát quaû nhö sau :- Qua 3 naêm thöïc nghieäm ôû hai khoái lôùp 7 vaø 8 toâi thu ñöôïc keát quaû nhö sau naêm Khoái 2005 – 20062006 – 20072007 – 2008Tæ leä treân TB Tæ leä treân TB Tæ leä treân TB752%57%68%850%53%65%NỘI DUNG - 17PHẦN III - KẾT LUẬN 	- Qua keát quaû nghieân cöùu vaø tìm kieám giaûi phaùp cho vieäc reøn luyeän khaû naêng tö duy phaân tích vaø tö duy toång hôïp toaùn cuûa hoïc sinh toâi thaáy raèng hoïc sinh cuûa chuùng ta naêng löïc tö duy chöa cao. Coù leõ naêng löïc tö duy cuûa caùc em haïn cheá bôûi chòu söï chi phoái cuûa nhieàu maët nhö giôùi tính , gia ñình xaõ hoäi moân hoïc ôû tröôøng quaù ña daïng phong phuù ...	- Ñeå giuùp caùc em coù khaû naêng tö duy phaân tích vaø naêng löïc xaùc laäp tính quy luaät toaùn hoïc cuûa hoïc sinh, trong quaù trình daïy hoïc caàn höôùng daãn cho hoïc sinh chuùng ta thöïc hieän caùc thao taùc tö duy logíc , phaûi taïo moïi ñieàu kieän ñeå phaùt trieån tö duy tröøu töôïng, phaân tích phaùn ñoaùn nhanh nheïn hôïp lyù .	- Ngaøy nay vôùi chöông trình saùch giaùo khoa vaø phöông phaùp giaûng daïy môùi, phöông tieän daïy hoïc ngaøy caøng ña daïng phuïc vuï thieát thöïc cho vieäc giaûng daïy. Vieäc quan taâm ñeán khaû naêng tö duy cuûa hoïc sinh caøng ñöôïc coi troïng vì vaäy toâi cuõng maïnh daïn vieát taäp taøi lieäu naøy mong caùc baïn ñoàng nghieäp coi ñaây chæ laø vaán ñeà ñaët ra ñeå baûn thaân toâi vaø taát caû chuùng ta cuøng coù yù kieán tham khaûo, ruùt kinh nghieäm moãi ngöôøi moãi yù sao cho töï baûn thaân NỘI DUNG - 18moãi giaùo vieân coù theâm moät bieän phaùp nhoû, vôùi muïc ñích naâng cao hôn nöõa chaát löôïng cuûa boä moân toaùn hình ôû baäc THCSvaø ñeå phaàn naøo phaùt hieän ra nhöõng hoïc sinh coù naêng khieáu trong nhaø tröôøng chuùng ta vaø giuùp caùc em phaùt huy ñöôïc khaû naêng tö duy cuûa mình .	Trên đây chỉ là một số giải pháp đưa ra để quý thầy cô giáo, bạn bè đồng nghiệp tham khảo . Rất mong sự đóng góp chân tình để cùng nhau có những giải pháp công hiệu nhất, nhằm nâng cao chất lượng môn hình học cho học sinh , nhất là phân môn hình học ở bậc THSC .	Ñöùc Phoå , Thaùng 02 naêm2009 Ngöôøi vieát	 Buøi Anh Tuøng NỘI DUNG - 19 Kết thúc

File đính kèm:

  • pptchuyen de powpoint.ppt
Bài giảng liên quan