Giáo án Đại số & Giải tích 11 Tiết 2 - Trần Sĩ Tùng
Kiến thức:
- Nắm được định nghĩa hàm số sin và côsin, từ đó dẫn tới định nghĩa hàm số tang và hàm số côtang như là những hàm số xác định bởi công thức.
- Nắm được tính tuần hoàn và chu kì của các HSLG sin, côsin, tang, côtang.
- Biết tập xác định, tập giá trị của 4 HSLG đó, sự biến thiên và biết cách vẽ đồ thị của chúng.
Kĩ năng:
- Diễn tả được tính tuần hoàn, chu kì và sự biến thiên của các HSLG.
- Biểu diễn được đồ thị của các HSLG.
- Xác định được mối quan hệ giữa các hàm số y = sinx và y = cosx, y = tanx và y = cotx.
Ngày soạn: 15/08/2008 Chương I: HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC Tiết dạy: 02 Bàøi 1: HÀM SỐ LƯỢNG GIÁC (tt) I. MỤC TIÊU: Kiến thức: Nắm được định nghĩa hàm số sin và côsin, từ đó dẫn tới định nghĩa hàm số tang và hàm số côtang như là những hàm số xác định bởi công thức. Nắm được tính tuần hoàn và chu kì của các HSLG sin, côsin, tang, côtang. Biết tập xác định, tập giá trị của 4 HSLG đó, sự biến thiên và biết cách vẽ đồ thị của chúng. Kĩ năng: Diễn tả được tính tuần hoàn, chu kì và sự biến thiên của các HSLG. Biểu diễn được đồ thị của các HSLG. Xác định được mối quan hệ giữa các hàm số y = sinx và y = cosx, y = tanx và y = cotx. Thái độ: Biết phân biệt rõ các khái niệm cơ bản và vận dụng từng trường hợp cụ thể. Tư duy các vấn đề của toán học một cách lôgic và hệ thống. II. CHUẨN BỊ: Giáo viên: Giáo án. Hình vẽ minh hoạ. Học sinh: SGK, vở ghi. Ôn tập kiến thức đã học về lượng giác ở lớp 10. III. HOẠT ĐỘNG DẠY HỌC: 1. Ổn định tổ chức: Kiểm tra sĩ số lớp. 2. Kiểm tra bài cũ: (3') H. Nêu định nghĩa hàm số sin ? Đ. sin: R ® R x sinx 3. Giảng bài mới: TL Hoạt động của Giáo viên Hoạt động của Học sinh Nội dung Hoạt động 1: Tìm hiểu khái niệm hàm số tang và hàm số côtang 20' H1. Nhắc lại định nghĩa các giá trị tanx, cotx đã học ở lớp 10 ? · GV nêu định nghĩa các hàm số tang và côtang. H2. Khi nào sinx = 0; cosx = 0 ? Đ1. tanx = ; cotx = Đ2. sinx = 0 Û x = kp cosx = 0 Û x = + kp I. Định nghĩa 2. Hàm số tang và côtang a) Hàm số tang Hàm số tang là hàm số được xác định bởi công thức: y = (cosx ¹ 0) kí hiệu là y = tanx. Tập xác định của hàm số y = tanx là D = R \ b) Hàm số côtang Hàm số côtang là hàm số được xác định bởi công thức: y = (sinx ¹ 0) kí hiệu là y = cotx. Tập xác định của hàm số y = cotx là D = R \ Hoạt động 2: Tìm hiểu tính chất chẵn lẻ của các hàm số lượng giác 5' H. So sánh các giá trị sinx và sin(–x), cosx và cos(–x) ? Đ. sin(–x) = –sinx cos(–x) = cosx Nhận xét: – Hàm số y = cosx là hàm số chẵn. – Các hàm số y = sinx, y = tanx, y = cotx là các hàm số lẻ. Hoạt động 3: Tìm hiểu tính tuần hoàn của các hàm số lượng giác 10' H1. Hãy chỉ ra một vài số T mà sin(x + T) = sinx ? H2. Hãy chỉ ra một vài số T mà tan(x + T) = tanx ? Đ1. T = 2p; 4p; … Đ2. T = p; 2p; … II. Tính tuần hoàn của hàm số lượng giác Nhận xét: Người ta chứng minh được rằng T = 2p là số dương nhỏ nhất thoả đẳng thức: sin(x + T) = sinx, "x Ỵ R a) Các hàm số y = sinx, y = cosx là các hàm số tuần hoàn với chu kì 2p. b) Các hàm số y = tanx, y = cotx là các hàm số tuần hoàn với chu kì p. Hoạt động 4: Củng cố 5' · Nhấn mạnh: – Tập xác định của các hàm số y = tanx, y = cotx. – Chu kì của các hàm số lượng giác. 4. BÀI TẬP VỀ NHÀ: Bài 1, 2 SGK. Đọc tiếp bài "Hàm số lượng giác". IV. RÚT KINH NGHIỆM, BỔ SUNG:
File đính kèm:
- dai11cb02.doc