500 bài toán bất đẳng thức chọn lọc - Cao Minh Quang

1. Cho , , a b c là các sốthực dương. Chứng minh rằng

2. [ Dinu Serbănescu ] Cho ( ) , , 0,1 a b c . Chứng minh rằng

Junior TST 2002, Romania

3. [ Mircea Lascu ] Cho , , a b c là các sốthực dương thỏa mãn ñiều kiện 1 abc = . Chứng

minh rằng

pdf49 trang | Chia sẻ: hainam | Lượt xem: 1718 | Lượt tải: 1download
Bạn đang xem trước 20 trang tài liệu 500 bài toán bất đẳng thức chọn lọc - Cao Minh Quang, để xem tài liệu hoàn chỉnh bạn click vào nút TẢI VỀ ở trên
 ca
+ + ≥
+ + +
. 
441. Cho 1 2 3 4 5, , , ,x x x x x là các số thực không âm thỏa mãn ñiều kiện 1i j
i j
x x
<
− =∑ . Hãy 
tìm giá trị nhỏ nhất của biểu thức 
5
1
i
i
x
=
∑ . 
442. Cho [ ]1 2 3 4, , , 1,1x x x x ∈ − . Hãy tìm giá trị nhỏ nhất của biểu thức 
( ) ( )
4 4
1 2 1 3 1 4 2 3 2 4 3 4 1 2 3 1 2 4 1 3 4 2 3 4
11
i i
ii
F x x x x x x x x x x x x x x x x x x x x x x x x x x
==
= − + + + + + + + + + −∑ ∏ . 
443. Cho [ ], , 0,1a b c∈ . Chứng minh rằng 
( )( ) ( )( ) ( )( )1 1 1 1 1 1 1a b c b c a c a b abc− − + − − + − − ≤ + . 
444. [ Cao Minh Quang ] Cho , ,a b c là các số thực dương. Chứng minh rằng 
( )2 2 22 2 2 3 a b ca b c
b c a a b c
+ +
+ + ≥
+ +
. 
445. [ Cao Minh Quang ] Cho , ,a b c là các số thực dương thỏa mãn ñiều kiện 3a b c+ + = . 
Chứng minh rằng 
( ) ( ) ( )2 2 21 1 1 2
a b b c c a
a b ab b c ca c a ca
+ + +
+ + ≥
+ + + + + +
. 
446. [ Cao Minh Quang ] Cho ( )1 2, ,..., 2nx x x n≥ là n số thực dương thỏa ñiều kiện 
1
1
2
n
i
i i
x
x=
≤
+∑ . 
Chứng minh rằng 
( )
1
11
1 1
n
i i
n n
x n=
−
≥
+ +∑ . 
447. [ Cao Minh Quang ] Cho , ,a b c là các số thực dương thỏa mãn ñiều kiện 1a b c+ + = . 
Chứng minh rằng 
2 2 2
1
3 2 3 3 2 3 3 2 3 12
ab bc ca
a b b c c a
+ + ≤
+ + + + + +
. 
448. Cho 1 2 2, ,..., nx x x là các số thực thỏa mãn ñiều kiện 1 1, 1,2,..., 2 1i ix x i n+ − ≤ = − . 
Chứng minh rằng 
( )1 2 2 1 2 2... ... 1n nx x x x x x n n+ + + + + + + ≤ + . 
Romania TST, 2000 
449. Cho , ,a b c là các số thực dương. Chứng minh rằng 
( ) ( )33 4a ab abc a b c+ + ≤ + + . 
450. [ Rumen Kozarev ] Cho x∈ℝ . Chứng minh rằng 
2
2
4 22.3 0
1
x x x
x
x x
 + +  − ≥   + + 
. 
451. Cho ( )0 1, 1,2,..., 2ix i n n≤ ≤ = ≥ . Chứng minh rằng 
( ) ( )1 2 1 2 2 3 1 1... ... 2n n n n
n
x x x x x x x x x x x−
 
 + + + − + + + + ≤
  
. 
Bulgaria, 1995 
452. Cho , , ,a b c d là các số thực dương. Chứng minh rằng 
500 Bài Toán Bất ðẳng Thức Chọn Lọc Cao Minh Quang 
 46 
( )4 4 4 4 4 4 4 4 2 2a c a d b c b d ad bc+ + + + + + + ≥ + . 
Turkey, 2006 
453. [ Phan Thị Mùi ] Cho 1 , 2a b≤ ≤ . Tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức 
( )2
3 3
a b
P
a b
+
=
+
454. [ Lê Quang Nẫm ] Cho , ,x y z là các số thực dương. Chứng minh rằng 
( ) ( )( )( )( )4 xy yz zx x y y z z x x y y z z x+ + ≤ + + + + + + + + . 
455. Cho , , 1a b c> . Chứng minh rằng 
12
1 1 1
a b c
b c a
+ + ≥
− − −
. 
456. [ Nguyễn ðức Tấn ] Cho , ,a b c là các số thực dương. Chứng minh rằng 
3 3 3a b c
a ac b ba c cb
b c a
+ + ≥ + + . 
457. Cho , ,x y z là các số thực dương thỏa mãn ñiều kiện 3 3 3 1x y z+ + = . Chứng minh rằng 
2 2 2
2 2 2
2
1 1 1
x y z
x y z
+ + ≥
− − −
. 
458. Cho , ,a b c là các số thực không âm thỏa mãn ñiều kiện 1a b c+ + = . Tìm giá trị lớn 
nhất của biểu thức 
2 3S ab bc ca= + + . 
459. [ Thái Nhật Phượng ] Cho , ,x y z là các số thực dương thỏa mãn ñiều kiện 
2 1xyz xy yz zx+ + + ≤ . 
Hãy tìm giá trị lớn nhất của biểu thức 
xyz . 
460. [ Minh Trân ] Cho 1 2, ,..., nx x x là các số thực không âm thỏa mãn ñiều kiện 
1
1
n
i
i
x
=
=∑ . 
Tìm giá trị lớn nhất của biểu thức 
1 2 2 3 1... n nx x x x x x−+ + + . 
461. [ Trần Văn Tỏ ] Cho , , 1a b c≥ . Chứng minh rằng 
( ) ( ) ( ) 2 2 2
1 1 12 9
1 1 1
a b c b c a c a b
a b c
 + + + + + + + + ≥  + + +
. 
462. [ Tạ Hoàng Thông ] Cho , ,x y z là ba số thực dương thỏa ñiều kiện 3 3 3 3x y z+ + = . 
Tìm giá trị lớn nhất của biểu thức 
( )3P xy yz zx xyz= + + − . 
463. [ Trương Ngọc ðắc ] Cho 1 2, ,..., na a a là các số thực dương thỏa mãn ñiều kiện 
( )
1 1
1 , 1, 2,...,
k k
i
i i
a i i k n
= =
≤ + =∑ ∑ . 
Chứng minh rằng 
1
1
1
n
i i
n
a n=
≥
+∑ . 
464. [ Tạ Hoàng Thông ] Cho , ,a b c là ba số thực dương thỏa ñiều kiện 2 2 2 3a b c+ + = . 
Tìm giá trị nhỏ nhất của biểu thức 
( )
2 2 2
2
ab bc caM
ab bc ca
+ +
=
+ +
. 
500 Bài Toán Bất ðẳng Thức Chọn Lọc Cao Minh Quang 
 47 
465. Cho , ,a b c là các số thực dương thỏa mãn ñiều kiện 1abc = . Hãy xác ñịnh giá trị lớn 
nhất của số thực k ñể ta luôn có bất ñẳng thức 
( )( )2 2 2
1 1 1 3 1k k a b c
a b c
+ + + ≥ + + + . 
Vietnam, 2006 
466. Cho [ ], , 1, 2x y z ∈ . Chứng minh rằng 
( ) 1 1 1 6 x y zx y z
x y z y z z x x y
     + + + + ≥ + +     + + +   
. 
Vietnam TST, 2006 
467. [ ðỗ Văn Ta ] Cho , ,a b c là các số thực dương thỏa mãn ñiều kiện 1abc≥ . Chứng 
minh rằng 
3
2
a b c
b ac c ab a bc
+ + ≥
+ + +
. 
468. Cho 1 , , 1
2
x y z≤ ≤ . Tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức 
1 1 1
x y y z z xP
z x y
+ + +
= + +
+ + +
. 
469. [ Phạm Hoàng Hà ] Cho , ,x y z là ba số thực không âm thỏa ñiều kiện 4x y z+ + = . 
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức 
2 1 3 1 4 1P x y z= + + + + + . 
470. [ Trần Tuấn Anh ] Cho , ,a b c là các số thực không âm thỏa ñiều kiện 1a b c+ + = . 
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức 
( ) ( ) ( )3 3 3P a b c b c a c a b= − + − + − . 
471. [ Tạ ðức Hải ] Cho , ,a b c là các số thực dương. Chứng minh rằng 
( ) ( ) ( )2 2 2
1 1 14 9a c b c a babc
b a ca b c b c a c a b
  + + + + + + + + ≥ 
+ + +  
. 
472. Cho , ,a b c là các số thực dương thỏa mãn ñiều kiện a b c abc+ + = . Chứng minh rằng 
( ) ( ) ( )
3 3
4 1 1 1 4
bc ca ab a b c
a bc b ca c ab
+ +
≤ + + ≤
+ + +
. 
473. [ Trần Tuấn Anh ] Cho 2, 0,
2
x y
 
 ∈    
. Tìm giá trị lớn nhất của biểu thức 
2 21 1
x yP
y x
= +
+ +
. 
474. Cho [ ]1 2 2007, ,..., 1,1x x x ∈ − thỏa mãn ñiều kiện 
2007
3
1
0i
i
x
=
=∑ . Chứng minh rằng 
1 2 2007
2007
...
3
x x x+ + + ≤ . 
ðẳng thức xảy ra khi nào? 
475. [ Phạm Hoàng Hà ] Cho , ,x y z là các số thực dương thỏa mãn ñiều kiện 
2 2 2 2 2 2 2006x y y z z x+ + + + + = . 
Tìm giá trị nhỏ nhất của biểu thức 
2 2 2
x y zH
y z z x x y
= + +
+ + +
. 
476. [ Cao Xuân Nam ] Cho , ,x y z là các số thực thỏa mãn ñiều kiện 
500 Bài Toán Bất ðẳng Thức Chọn Lọc Cao Minh Quang 
 48 
4 4 4
4 4 4
8 8 8 0
16 16 16
x y z
x y z
− − −
+ + ≥
+ + +
. 
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức 
xyz . 
477. [ Nguyễn Khánh Nguyên ] Cho , ,a b c là các số thực dương thỏa mãn ñiều kiện 
2 2 2 1a b c+ + = . 
Chứng minh rằng 
2 2 2
1
1 1 1
a b c
b a c b a c
+ + ≥
+ − + − + −
. 
478. [ Phan Tiến Thành ] Cho ( ), , 0,1x y z ∈ thỏa mãn ñiều kiện ( )( )( )1 1 1xyz x y z= − − − . 
Chứng minh rằng 
2 2 2 3
4
x y z+ + ≥ . 
479. [ Trần Tuấn Anh ] Cho 3, , 1, 4 1a b c a b c≥− + + = − . Tìm giá trị nhỏ nhất của biểu 
thức 
3 3 3P a b c= + + . 
480. [ Bùi Tuấn Anh ] Cho , ,a b c là các số thực dương. Tìm giá trị nhỏ nhất của biểu thức 
( )3
2 2 2
a b cab bc caP
a b c abc
+ ++ +
= +
+ +
. 
481. [ Trần Việt Anh ] Cho n∈ℕ . Kí hiệu ( )2 1 !!n+ là tích các số nguyên dương lẻ từ 1 ñến 
2n +1. Chứng minh rằng 
( ) ( )12 1 2 1 !!n nn n π++ ≤ + . 
482. [ Ngô Trung Kiên ] Cho , ,a b c là các số thực dương thỏa mãn ñiều kiện 
3ab bc ca abc+ + ≤ . 
Chứng minh rằng 
4 4 4
1
2 2 2
a b b c c a
a b b c c a
+ + ≥
+ + +
. 
483. [ Phạm Văn Thuận ] Cho , , ,a b c d là các số thực phân biệt thỏa mãn các ñiều kiện 
4,a b c d ac bd
b c d a
+ + + = = . 
Tìm giá trị lớn nhất của biểu thức 
( )2
a b c d abcd
c d a b ad cd
+ + + −
+
. 
484. [ Phạm Kim Hùng ] Cho , ,a b c là các số thực dương thỏa mãn ñiều kiện 1abc≥ . 
Chứng minh rằng 
1 1 1
1 1 1
a b c
a b c
b c a
+ + +
+ + ≥ + +
+ + +
. 
485. [ Trần Nam Dũng ] Cho , ,x y z là các số thực dương. Chứng minh rằng 
( ) ( )2 2 22 8 5xyz x y z x y z+ + + + ≥ + + . 
ðẳng thức xảy ra khi nào? 
486. [ Trần Nam Dũng ] Cho ( )1,2k ∈ − và , ,a b c là ba số thực ñôi một khác nhau. Chứng 
minh rằng 
( )
( ) ( ) ( )
( )2 2 2
2 2 2
9 21 1 1
4
k
a b c k ab bc ca
a b b c c a
  −  + + + + + + + ≥     − − −  
. 
ðẳng thức xảy ra khi nào? 
500 Bài Toán Bất ðẳng Thức Chọn Lọc Cao Minh Quang 
 49 
487. Cho 1 2, ,..., 1nx x x >− thỏa mãn ñiều kiện 
3 3 3
1 2 ... 0nx x x+ + + = . Chứng minh rằng 
1 2 ... 3n
n
x x x+ + + ≤ . 
488. Cho , ,a b c là các số thực dương thỏa mãn ñiều kiện 1a b c+ + = . Chứng minh rằng 
( )1 1 1 2ab bc ca a b c
c a b
+ + + + + ≥ + + . 
489. Cho , ,a b c là các số thực dương. Chứng minh rằng 
1 1 1
bc a ca b ab c
abc
a b c
   + + +     ≥           + + +
. 
490. Cho , ,x y z là các số thực dương. Chứng minh rằng 
( ) ( ) ( )
( ) ( ) ( )
2 2 2
1 1 1
.
1 1 1
yz zx xy
x x y z y x y z z x y z
x y z
x x y z y x y z z x y z
+ +
+ + + + + + + + +
≥ + +
+ + + + + + + + +
491. Cho , ,a b c là các số thực dương thỏa mãn ñiều kiện 1abc = . Chứng minh rằng 
3 3 3
a b b c c a a b c+ + ≥ + + . 
492. Cho , ,x y z là các số thực dương thỏa mãn ñiều kiện 1x y z+ + = . Chứng minh rằng 
1 1 1 9
1 1 1 10xy yz zx
+ + ≥
+ + +
. 
493. Cho 1 , 1x y− ≤ ≤ . Chứng minh rằng 
2
2 21 1 2 1
2
x y
x y
 + − + − ≤ −   
. 
494. Cho n là một số nguyên dương. Chứng minh rằng 
n nn n nn n n n n+ + − ≤ . 
495. Cho , ,a b c là các số thực dương thỏa mãn ñiều kiện 1ab bc ca+ + = . Chứng minh rằng 
2 2 2
3
21 1 1
a b c
a b c
+ + ≤
+ + +
. 
496. Cho , , ,a b x y là các số thực dương, a b< . Chứng minh rằng 
( ) ( )b aa a b bx y x y+ ≥ + . 
497. Cho 10 , ,
2
a b c< ≤ . Chứng minh rằng 
31 1 1 31 1 1 1
a b c a b c
           − − − ≥ −                 + +
. 
498. Cho , , ,a b c d là các số thực dương thỏa mãn ñiều kiện 2 2 2 2 1a b c d+ + + = . Chứng minh 
rằng 
( )( )( )( )1 1 1 1a b c d abcd− − − − ≥ . 
499. Cho , ,a b c là các số thực dương. Chứng minh rằng 
( ) ( ) ( )2 2 22 2 2
1a b c
a b c b c a c a b
+ + ≥
+ + + + + +
. 
500. Cho , ,a b c là các số thực dương. Chứng minh rằng 
( ) ( ) ( ) ( )2 2 2 2 2 22 2 2a b c a b ca ab b bc c ca a b c + ++ + + ≥ + + . 
… sẽ tiếp tục cập nhật 

File đính kèm:

  • pdf500 Bai tap Bat dang thuc.pdf
Bài giảng liên quan