Bài 8: Đường tròn

a. Đường tròn

 

Đường tròn tâm O, bán kính R là hình gồm các điểm cách O một khoảng bằng R, kí hiệu (O; R)

 

 

ppt16 trang | Chia sẻ: hainam | Lượt xem: 1340 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Bài 8: Đường tròn, để tải tài liệu về máy bạn click vào nút TẢI VỀ ở trên
OR = 1,7cmMRRRRBCDAĐường tròn tâm O, bán kính R là hình gồm các điểm cách O một khoảng bằng R, kí hiệu (O; R)1. Đường tròn và hình tròn.a. Đường trònVậy đường trịn là gì?Bài 8 : 	ĐƯỜNG TRỊNHãy diễn đạt các kí hiệu sau bằng lời? (A; 4cm)	 (B; 7cm)	 (O; OB)Đường trịn tâm A, bán kính 4cmĐường trịn tâm B, bán kính 7cmĐường trịn tâm O, bán kính OB* Nhận xét:- Điểm M nằm trên(thuộc) đường trịn => OM = R.- Điểm N nằm trong đường trịn => ON OP > R.OMNPRĐường tròn tâm O, bán kính R là hình gồm các điểm cách O một khoảng bằng R, kí hiệu (O; R)1. Đường tròn và hình tròn.a. Đường trònĐiểm M, N và P cĩ quan hệ như thế nào với (O; R)Bài 8 : 	ĐƯỜNG TRỊNOM Hình trịn là hình gồm các điểm nằm trên đường trịn và các điểm nằm bên trong đường trịn đĩ.Hình trịn1. Đường tròn và hình tròn.a. Đường trònb. Hình trònVậy hình trịn là gì?Bài 8 : 	ĐƯỜNG TRỊNĐường trịnHình trịnO RMĐường trịn tâm O bán kính R là hình gồm các điểm cách O một khoảng bằng R O R M Hình trịn là hình gồm các điểm nằm trên đường trịn và các điểm nằm bên trong đường trịn đĩ .O RMa) Điểm A nằm trên đường trịn tâm O bán kính R.b) Điểm A và B nằm trong đường trịn tâm O bán kính R.c) Điểm B và C khơng nằm trên đường trịn tâm O bán kính R.d) Điểm B nằm ngồi đường trịn tâm O bán kính R.O RBABài tập 1CTrong các khẳng định sau, khẳng định nào là đúng?a) Điểm A thuộc hình trịn.b) Điểm C thuộc hình trịn.c) Điểm C và B thuộc hình trịn.O BDCABài tập 2 Trong các khẳng định sau, khẳng định nào là đúng?d) Điểm A và D thuộc hình trịn.ABCungCungDây cungOCung trịn là một phần của đường trịn Đoạn thẳng nối hai đầu mút của cung trịn được gọi là dây cung. 2. Cung và dây cung :ABOCungCungMột nửa đường trịnMột nửa đường trịnDây đi qua tâm là đường kínhAO = 4cmAB = 8cmĐường kính dài gấp đơi bán kínhĐường kính là dây cung lớn nhất3. MỘT CƠNG DỤNG KHÁC CỦA COM PA: Ví dụ 1 : Cho hai đoạn thẳng AB và MN . Dùng compa để so sánh hai đoạn thẳng ấy mà khơng đo độ dài từng đoạn thẳng . ABMNTa cĩ : AB < MN Cách làm: Ví dụ 2 : Cho hai đoạn thẳng AB và CD. Làm thế nào để biết tổng độ dài hai đoạn thẳng đĩ mà khơng cần đo riêng từng đoạn thẳng ? Cách làm: ABCDOMNxTa cĩ : AB = OM ; CD = MN AB + CD = OM + MN = ON = = 9cm .ON = 9cm . Em hãy vẽ hai đoạn thẳng BC và MN cĩ độ dài tùy ý. Khơng đo riêng từng đoạn, em hãy xác định tổng độ dài của chúng?Cho đường trịn (O;R) như hình vẽ. Khẳng định nào sau đây là đúng?Điểm O cách mọi điểm trên đường trịn 	một khoảng R.b) Điểm O cách mọi điểm trên hình trịn 	một khoảng R.c) Điểm O nằm trên đường trịn.d) Chỉ cĩ câu c) đúng. .Bài tập 3ROBµi 39 - SGK - trang 92 : A B C D I KCho h×nh vÏ : Hai ®­êng trßn (A ;3cm) vµ (B ; 2cm) c¾t nhau t¹i C vµ D . BiÕt AB = 4cm . §­êng trßn t©m A vµ B lÇn l­ỵt c¾t ®o¹n th¼ng AB t¹i K vµ I .TÝnh CA , CB , DA , DB .I cã ph¶i lµ trung ®iĨm cđa ®o¹n th¼ng AB kh«ng ? Tr¶ lêi : a) V× C vµ D ®Ịu thuéc ®­êng trßn t©m A nªn AC = AD = 3cm .C vµ D cịng thuéc ®­êng trßn t©m B nªn BC = BD = 2cm .b) Vì I nằm giữa A và B Do đó : AI + IB = AB Mà : AB = 4cm ; I  (B; 2cm)  IB = 2cm Nên AI + 2 = 4 AI = 2 (cm)	 Ta thấy AI = IB (= 2cm) Vậy I là trung điểm của đoạn thẳng ABc) Tính IK: Có I nằm giữa A và K Nên AI + IK = AK Mà K  (A; 3cm)  AK = 3cm Do đó 2 + IK = 3 IK = 3 – 2 =1 (cm)- Học bài theo SGK, nắm vững khái niệm đường trịn, hình trịn, cung trịn, dây cung. HƯỚNG DẪN VỀ NHÀ 

File đính kèm:

  • pptDuong Tron.ppt
Bài giảng liên quan