Bài giảng Đại số Lớp 6 - Chương 1 - Bài 18: Bội chung nhỏ nhất (Bản chuẩn kĩ năng)
Bội chung nhỏ nhất của 2 hay nhiều số là số nhỏ nhất khác 0
trong tập hợp các bội chung của các số đó
Muốn tìm BCNN của 2 hay nhiều số lớn hơn 1; ta thực hiện 3 bước sau:
Bước 1: Phân tích mỗi số ra thừa số nguyên tố.
Bước 2: Chọn ra các thừa số nguyên tố chung và riêng,
Bước 3: Lập tích của các thừa số đã chọn; mỗi thừa số lấy số mũ lớn nhất của nó. Tích đó là BCNN cần tìm.
1 KIỂM TRA BÀI CŨ Muốn tìm bội của một số ta làm như thế nào? Tìm B(4); B(6); BC(4; 6) 2 Bài 18: BỘI CHUNG NHỎ NHẤT 1 / Bội chung nhỏ nhất : Bội chung nhỏ nhất của 2 hay nhiều số là số nhỏ nhất khác 0 trong tập hợp các bội chung của các số đó * Nhận xét : Tất cả các bội chung đều là bội của bội chung nhỏ nhất . Với mọi số tự nhiên a; b( khác 0) ta có : BCNN (a, 1) = a; BCNN (a, b, 1) = BCNN (a, b) * Tìm : : BCNN (5, 1) = BCNN (4, 6, 1) = * Chú ý 5 BCNN (4, 6) = 12 3 2/ Tìm BCNN bằng cách phân tích các số ra thừa số nguyên tố : Ví dụ : Tìm BCNN (8, 18, 30) BCNN (8, 18, 30) = = 360 Muốn tìm BCNN của 2 hay nhiều số lớn hơn 1; ta thực hiện 3 bước sau : Bước 1 : Phân tích mỗi số ra thừa số nguyên tố . Bước 2 : Chọn ra các thừa số nguyên tố chung và riêng , Phân tích mỗi số ra thừa số nguyên tố Chọn ra các thừa số nguyên tố chung và riêng . Lập tích các thừa số đã chọn , mỗi thừa số lấy số mũ lớn nhất của nó Bước 3 : L ập tích của các thừa số đã chọn ; mỗi thừa số lấy số mũ lớn nhất của nó . Tích đó là BCNN cần tìm . 4 CÁCH TÌM ƯCLN CÁCH TÌM BCNN Bước 1: Phân tích mỗi số ra thừa số nguyên tố. Bước 1 : Phân tích mỗi số ra thừa số nguyên tố. Giống nhau bước 1 Bước 2 : Chọn ra các thừa số nguyên tố chung. Bước 2 : Chọn ra các thừa số nguyên tố chung và riêng. Khác nhau bước 2 chỗ nào nhỉ? chung . chung và riêng Bước 3 : Lập tích các thừa số đã chọn, mỗi thừa số lấy số mũ nhỏ nhất của nó. Bước 3 : Lập tích các thừa số đã chọn, mỗi thừa số lấy số mũ lớn nhất của nó. Lại khác nhau ở bước 3 chỗ nào? số mũ nhỏ nhất số mũ lớn nhất 5 ? Tìm BCNN (8, 12); BCNN(5, 7, 8) ; BCNN(12, 16, 48) * Chú ý: 1/ Nếu các số đã cho từng đôi một nguyên tố cùng nhau thì BCNN của chúng là tích của các số đó . Ví dụ : BCNN(5, 7, 8) = 5.7.8 = 280 2/ Trong các số đã cho , nếu số lớn nhất là bội của các số còn lại thì BCNN của chúng là số lớn nhất ấy . Ví dụ : Xét 3 số 12; 16; 48, ta có 48 chia hết cho cả 12 và 16 nên BCNN(12, 16, 48) = 48. 6 Những kiến thức cần nhớ 1. Bội chung nhỏ nhất của hai hay nhiều số là số nhỏ nhất khác 0 trong tập hợp các bội chung . 2. Muốn tìm BCNN của hai hay nhiều số lớn hơn 1, ta thực hiện ba bước sau : Bước1 : Phân tích mỗi số ra thừa số nguyên tố Bước 2 : Chọn các thừa số nguyên tố chung và riêng . Bước 3 : Lập tích các thừa số đã chọn mỗi thừa số lấy với số mũ lớn nhất . Tích đó là BCNN phải tìm . 3. Nếu các số đã cho đôi một nguyên tố cùng nhau thì BCNN là tích của các số đó 4. Trong các số đã cho , nếu số lớn nhất là bội của các số còn lại thì BCNN của chúng là số lớn nhất đó . 7 Hướng dẫn về nhà - Học thuộc định nghĩa BCNN - Nắm vững cách tìm BCNN, phân biệt với cách tìm ƯCLN - Biết tìm BC thông qua BCNN - Làm bài tập 150, 151, 152, 153 ( SGK-59) 8 Chào tạm biệt 9 B(8) = { 0 ; 8; 16; ....; 352; 360; ; 712; 720 ; } B(18)={ 0 ;18; 54;; 342; 360 ;702; 720 ;} B(30)={ 0 ; 30; 60; 90;; 330; 360 ;690; 720 ;} BC(8;18;30)= { 0; 360; 720 ;} 10
File đính kèm:
- bai_giang_dai_so_lop_6_chuong_1_bai_18_boi_chung_nho_nhat_ba.ppt