Bài giảng Đại số Lớp 8 - Tiết 14: Luyện tập
Bài 54a/25
Phân tích đa thức sau thành nhân tử
x3 + 2x2y + xy2 – 9x
= x(x2 + 2xy + y2 – 9)
= x[(x + y)2 – 32]
= x(x + y + 3)(x + y – 3)
Bài 54b/25
Phân tích đa thức sau thành nhân tử
2x – 2y – x2 + 2xy – y2
= (2x – 2y) – (x2 – 2xy + y2)
= 2(x – y) – (x – y)2
= (x – y)(2 – x + y)
Tiết 14 Luyện tập Bài 54a/25 Phân tích đa thức sau thành nhân tử x 3 + 2x 2 y + xy 2 – 9x = x(x 2 + 2xy + y 2 – 9) = x[(x + y) 2 – 3 2 ] = x(x + y + 3)(x + y – 3) x 3 + 2x 2 y + xy 2 – 9x = x (x 2 + 2xy + y 2 – 9) = x[(x + y) 2 – 3 2 ] = x(x + y + 3)(x + y – 3) x 3 + 2x 2 y + xy 2 – 9x = x(x 2 + 2xy + y 2 – 9) = x[(x + y) 2 – 3 2 ] = x(x + y + 3)(x + y – 3) x 3 + 2x 2 y + xy 2 – 9x = x( x 2 + 2xy + y 2 – 9 ) = x[ (x + y) 2 – 3 2 ] = x(x + y + 3)(x + y – 3) x 3 + 2x 2 y + xy 2 – 9x = x(x 2 + 2xy + y 2 – 9) = x[( x + y ) 2 – 3 2 ] = x( x + y + 3 )( x + y – 3 ) ( A + B ) ( A - B ) Bài 54b/25 Phân tích đa thức sau thành nhân tử 2x – 2y – x 2 + 2xy – y 2 = (2x – 2y) – (x 2 – 2xy + y 2 ) = 2(x – y) – (x – y) 2 = (x – y)(2 + x – y)(2 – x + y) 2x – 2y – x 2 + 2xy – y 2 = (2x – 2y) – (x 2 – 2xy + y 2 ) = 2(x – y) – (x – y) 2 = (x – y)(2 + x – y)(2 – x + y) 2x – 2y – x 2 + 2xy – y 2 = ( 2 x – 2 y) – (x 2 – 2xy + y 2 ) = 2 (x – y) – (x – y) 2 = (x – y)(2 + x – y)(2 – x + y) 2x – 2y – x 2 + 2xy – y 2 = (2x – 2y) – (x 2 – 2xy + y 2 ) = 2(x – y) – (x – y) 2 = (x – y)(2 + x – y)(2 – x + y) 2x – 2y – x 2 + 2xy – y 2 = (2x – 2y) – ( x 2 – 2xy + y 2 ) = 2(x – y) – (x – y) 2 = (x – y)(2 + x – y)(2 – x + y) 2x – 2y – x 2 + 2xy – y 2 = (2x – 2y) – (x 2 – 2xy + y 2 ) = 2 (x – y) – (x – y) 2 = (x – y) (2 – x + y) 2x – 2y – x 2 + 2xy – y 2 = (2x – 2y) – (x 2 – 2xy + y 2 ) = 2(x – y) – (x – y) 2 = (x – y) (2 – x + y) Bài 55b/25 Phân tích đa thức sau thành nhân tử (2x – 1) 2 – (x + 3) 2 = [(2x – 1) + (x + 3)][(2x – 1) – (x + 3)] = (2x – 1 + x + 3)(2x – 1 – x – 3) (2x – 1) 2 – (x + 3) 2 = [(2x – 1) + (x + 3)][(2x – 1) – (x + 3)] = (2x – 1 + x + 3)(2x – 1 – x – 3) (2x – 1) 2 – (x + 3) 2 = [ (2x – 1) + (x + 3) ][ (2x – 1) – (x + 3) ] = (2x – 1 + x + 3)(2x – 1 – x – 3) (2x – 1) 2 – (x + 3) 2 = [(2x – 1) + (x + 3)][(2x – 1) – (x + 3)] = (2x – 1 + x + 3)(2x – 1 – x – 3) = (3x + 2)(x – 4) Bài 55c/25 Phân tích đa thức sau thành nhân tử x 2 (x – 3) + 12 – 4x = x 2 (x – 3) – 4(x – 3) = (x – 3)(x 2 – 4) = (x – 3)(x + 2)(x – 2) x 2 (x – 3) + 12 – 4x = x 2 (x – 3) – 4(x – 3) = (x – 3)(x 2 – 4) = (x – 3)(x + 2)(x – 2) x 2 (x – 3) + 12 – 4x = x 2 (x – 3) – 4 (x – 3) = (x – 3) (x 2 – 4) = (x – 3)(x + 2)(x – 2) x 2 (x – 3) + 12 – 4x = x 2 (x – 3) – 4(x – 3) = (x – 3)( x 2 – 4 ) = (x – 3) (x + 2)(x – 2) Bài 56b/25 Tính giá trị đa thức x 2 – y 2 – 2y – 1 tại x = 93 và y = 6 Giải x 2 – y 2 – 2y – 1 = x 2 – (y 2 + 2y + 1) = x 2 – (y + 1) 2 = (x + y + 1)(x – y – 1) = (93+6+1)(93–6–1) (x=93 và y=6) = 100.86 = 8600 x 2 – y 2 – 2y – 1 = x 2 – (y 2 + 2y + 1) = x 2 – (y + 1) 2 = (x + y + 1)(x – y – 1) = (93+6+1)(93–6–1) (x=93 và y=6) = 100.86 = 8600 x 2 – y 2 – 2y – 1 = x 2 – ( y 2 + 2y + 1 ) = x 2 – (y + 1) 2 = (x + y + 1)(x – y – 1) = (93+6+1)(93–6–1) (x=93 và y=6) = 100.86 = 8600 x 2 – y 2 – 2y – 1 = x 2 – (y 2 + 2y + 1) = x 2 – ( y + 1 ) 2 = ( x + y + 1 )( x – y – 1 ) = (93+6+1)(93–6–1) (x=93 và y=6) = 100.86 = 8600 x 2 – y 2 – 2y – 1 = x 2 – (y 2 + 2y + 1) = x 2 – (y + 1) 2 = (x + y + 1)(x – y – 1) = (93+6+1)(93–6–1) (x=93 và y=6) = 100.86 = 8600 Bài 57a/25 Phân tích đa thức sau thành nhân tử x 2 – 4x + 3 = x 2 – x – 3x + 3 = (x 2 – x) – (3x – 3) = x(x – 1) – 3(x – 1) = (x – 1)(x – 3) x 2 – 4x + 3 = x 2 – x – 3x + 3 = (x 2 – x) – (3x – 3) = x(x – 1) – 3(x – 1) = (x – 1)(x – 3) x 2 – 4x + 3 = x 2 – x – 3x + 3 = (x 2 – x) – (3x – 3) = x(x – 1) – 3(x – 1) = (x – 1)(x – 3) x 2 – 4x + 3 = x 2 – x – 3x + 3 = (x 2 – x) – (3x – 3) = x (x – 1) – 3 (x – 1) = (x – 1)(x – 3) x 2 – 4x + 3 = x 2 – x – 3x + 3 = (x 2 – x) – (3x – 3) = x (x – 1) – 3 (x – 1) = (x – 1) (x – 3) BÀI TẬP Phân tích các đa thức sau đây thành nhân tử Bài 47a/ 22 x 2 – xy + x – y = (x 2 – xy) + (x – y) =x(x – y) + (x – y) =(x – y)(x + 1) x 2 – xy + x – y =(x 2 – xy) + (x – y) =x(x – y) + (x – y) =(x – y)(x + 1) x 2 – xy + x – y =(x 2 – xy) + (x – y) =x(x – y) + (x – y) =(x – y)(x + 1) x 2 – xy + x – y =(x 2 – xy) + (x – y) =x(x – y) + (x – y) =(x – y)(x + 1) x 2 – xy + x – y =(x 2 – xy) + (x – y) =x(x – y) + (x – y) =(x – y)(x + 1) x 2 – xy + x – y =(x 2 – xy) + (x – y) =x(x – y) + (x – y) =(x – y) (x + 1) x 2 – xy + x – y =(x 2 – xy) + (x – y) =x(x – y) + (x – y) =(x – y)(x + 1) x 2 – xy + x – y =(x 2 – xy) + (x – y) =x(x – y) + (x – y) =(x – y)(x + 1) x 2 – x y + x – y =(x 2 – xy) + (x – y) =x(x – y) + (x – y) =(x – y)(x + 1) Nhóm cách 2 Phân tích các đa thức sau đây thành nhân tử Bài 47c/ 22 3x 2 – 3xy – 5x + 5y = (3x 2 – 3xy) – (5x – 5y) =3x(x – y) -5(x – y) = (x – y)(3x – 5) 3x 2 – 3xy – 5x + 5y =(3x 2 – 3xy) – (5x – 5y) =3x(x – y) -5(x – y) = (x – y)(3x – 5) 3x 2 – 3xy – 5x + 5y =(3x 2 – 3xy) – (5x – 5y) =3x(x – y) -5(x – y) = (x – y)(3x – 5) 3x 2 – 3xy – 5x + 5y =(3x 2 – 3xy) – (5x – 5y) =3x(x – y) -5(x – y) = (x – y)(3x – 5) 3x 2 – 3xy – 5x + 5y =(3x 2 – 3xy) – (5x – 5y) =3x(x – y) -5(x – y) = (x – y)(3x – 5) 3x 2 – 3xy – 5x + 5y =(3x 2 – 3xy) – (5x – 5y) =3x(x – y) -5(x – y) = (x – y) (3x – 5) 3x 2 – 3xy – 5x + 5y =(3x 2 – 3xy) – (5x – 5y) =3x(x – y) -5(x – y) = (x – y)(3x – 5) Phân tích các đa thức sau đây thành nhân tử Bài 48a/ 22 x 2 + 4x – y 2 + 4 = x 2 + 4x + 4 – y 2 = (x 2 + 4x + 4) – y 2 = (x + 2) 2 – y 2 = (x + 2 + y)(x + 2 – y) x 2 + 4x – y 2 + 4 = x 2 + 4x + 4 – y 2 = (x 2 + 4x + 4) – y 2 = (x + 2) 2 – y 2 = (x + 2 + y)(x + 2 – y) 3 số hạng này lập thành hằng đẳng thức gì? Tìm cách nhóm thích hợp x 2 + 4x – y 2 + 4 = x 2 + 4x + 4 – y 2 = (x 2 + 4x + 4) – y 2 = (x + 2) 2 – y 2 = (x + 2 + y)(x + 2 – y) x 2 + 4x – y 2 + 4 = x 2 + 4x + 4 – y 2 = (x 2 + 4x + 4) – y 2 = (x + 2) 2 – y 2 = (x + 2 + y)(x + 2 – y) x 2 + 4x – y 2 + 4 = x 2 + 4x + 4 – y 2 = (x 2 + 4x + 4) – y 2 = (x + 2) 2 – y 2 = (x + 2 + y)(x + 2 – y) x 2 + 4x – y 2 + 4 = x 2 + 4x + 4 – y 2 = (x 2 + 4x + 4) – y 2 = (x + 2) 2 – y 2 = (x + 2 + y)(x + 2 – y) Phân tích các đa thức sau đây thành nhân tử Bài 48b/ 22 3x 2 + 6xy + 3y 2 – 3z 2 = 3(x 2 + 2xy + y 2 – z 2 ) = 3[(x + y) 2 – z 2 ] = 3(x + y + z)(x + y – z) 3x 2 + 6xy + 3y 2 – 3z 2 = 3(x 2 + 2xy + y 2 – z 2 ) = 3[(x + y) 2 – z 2 ] = 3(x + y + z)(x + y – z) 3x 2 + 6xy + 3y 2 – 3z 2 = 3( x 2 + 2xy + y 2 – z 2 ) = 3[ (x + y) 2 – z 2 ] = 3(x + y + z)(x + y – z) 3x 2 + 6xy + 3y 2 – 3z 2 = 3(x 2 + 2xy + y 2 – z 2 ) = 3[( x + y ) 2 – z 2 ] = 3( x + y + z )( x + y – z ) 3x 2 + 6xy + 3y 2 – 3z 2 = 3(x 2 + 2xy + y 2 – z 2 ) = 3[(x + y) 2 – z 2 ] = 3(x + y + z)(x + y – z) DẶN DÒ Làm các bài tập 54c, 55a, 57bc/25
File đính kèm:
- bai_giang_dai_so_lop_8_tiet_14_luyen_tap.ppt