Bài giảng điện tử Đại số Khối 6 - Chương 1 - Bài 18: Bội chung nhỏ nhất (Bản chuẩn kiến thức)

Bội chung nhỏ nhất của 2 hay nhiều số là số nhỏ nhất khác 0

 trong tập hợp các bội chung của các số đó

Bội chung nhỏ nhất của 2 số a và b kí hiệu là BCNN(a; b)

Ví dụ:

B(4) = {0; 4; 8; 12; 16; 20; 24; 28; 32; 36; .}

B(6) = {0; 6; 12; 18; 24; 30; 36; .}

BC(4; 6) = {0; 12; 24; 36; .}

BCNN(4;6) = 12

Chú ý

Với mọi số tự nhiên a, b ta có:

BCNN (a; 1) = a

BCNN (a; b; 1) = BCNN (a; b)

Ví dụ:

BCNN (5; 1) = 5

BCNN (4; 6; 1) = BCNN (4; 6) = 12

Muốn tìm BCNN của 2 hay nhiều số lớn hơn 1,ta thực hiện 3 bước sau:

Phân tích mỗi số ra thừa số nguyên tố.

Chọn ra các thừa số nguyên tố chung và riêng.

Tính tích của các thừa số đã chọn, mỗi thừa số lấy số mũ lớn nhất của nó. Tích đó là BCNN cần tìm.

 

ppt24 trang | Chia sẻ: tranluankk2 | Ngày: 02/04/2022 | Lượt xem: 232 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Bài giảng điện tử Đại số Khối 6 - Chương 1 - Bài 18: Bội chung nhỏ nhất (Bản chuẩn kiến thức), để xem tài liệu hoàn chỉnh bạn click vào nút TẢI VỀ ở trên
CHÀO MỪNG CÁC THẦY CÔ GIÁO VỀ DỰ GIỜ TOÁN LỚP 6A1 
KIỂM TRA BÀI CŨ 
Muốn tìm bội của một số khác 0 ta làm thế nào? 
Tìm B(4); B(6); BC(4; 6). 
B(4) = {0; 4; 8; 12; 16; 20; 24; 28; 32; 36;..} 
B(6) = {0; 6; 12; 18; 24; 30; 36;.} 
BC(4; 6) = {0; 12; 24; 36; .} 
0 
0 
12 
12 
24 
24 
36 
36 
Giải: 
12 
Số 12 là số nhỏ nhất khác 0 trong tập hợp các bội chung của 4 và 6. 
12 là bội chung nhỏ nhất của 4 và 6. 
Kiểm tra bài cũ 
Tiết 34 
BỘI CHUNG NHỎ NHẤT 
Bài 18: 
BỘI CHUNG NHỎ NHẤT 
Bội chung nhỏ nhất của 2 số a và b kí hiệu là BCNN(a; b) 
I/ Bội chung nhỏ nhất 
Bội chung nhỏ nhất của 2 hay nhiều số là số nhỏ nhất khác 0 
 trong tập hợp các bội chung của các số đó 
Ví dụ: 
B(4) = {0; 4; 8; 12 ; 16; 20; 24 ; 28; 32; 36 ;..} 
B(6) = {0; 6; 12 ; 18; 24 ; 30; 36 ;.} 
BC(4; 6) = {0; 12 ; 24; 36; .} 
BCNN(4;6) = 12 
Nhận xét 
Tất cả các bội chung đều là bội của bội chung nhỏ nhất. 
Nhận xét gì về BCNN(8,1) với 8; 
BCNN(4, 6, 1) với BCNN(4, 6)? 
* Tìm BCNN(8, 1) 
 B(8) = { 0 ; 8 ; 16 ; } 
 B(1) = { 0 ; 1; 2; 3; 4; 5; 6; 7; 8 ; 9; 10 } 
BC(8, 1) = {0; 8 ; 16; } 
BCNN(8, 1) = 8 
B(4) = { 0 ; 4; 8; 12 ; 16; 20; 24 ; 28; 32; 36 ;} 
B(6) = { 0 ; 6; 12 ; 18; 24 ; 30; 36 ;} 
* Tìm BCNN(4, 6, 1) 
 B(1) = { 0 ; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12 ; } 
BC(4, 6, 1) = {0; 12 ; 24;} 
BCNN(4, 6, 1) = 12 
Áp dụng : Tìm BCNN(8, 1) và BCNN(4, 6, 1) 
BCNN(8, 1) = 8; 
BCNN(4, 6, 1) = BCNN(4, 6) 
Bài 18: 
BỘI CHUNG NHỎ NHẤT 
Chú ý 
Với mọi số tự nhiên a, b ta có: 
BCNN (a; 1) = a 
BCNN (a; b; 1) = BCNN (a; b) 
Ví dụ: 
BCNN (5; 1) = 5 
BCNN (4; 6; 1) = BCNN (4; 6) = 12 
* Tìm BCNN(8, 1) 
 B(8) = { 0 ; 8 ; 16 ; } 
 B(1) = { 0 ; 1; 2; 3; 4; 5; 6; 7; 8 ; 9; 10 } 
BC(8, 1) = {0; 8 ; 16; } 
BCNN(8, 1) = 8 
B(4) = { 0 ; 4; 8; 12 ; 16; 20; 24 ; 28; 32; 36 ;} 
B(6) = { 0 ; 6; 12 ; 18; 24 ; 30; 36 ;} 
* Tìm BCNN(4, 6, 1) 
 B(1) = { 0 ; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12 ; } 
BC(4, 6, 1) = {0; 12 ; 24;} 
BCNN(4, 6, 1) = 12 
Áp dụng : Tìm BCNN(8, 1) và BCNN(4, 6, 1) 
Có cách nào tìm BCNN của hai hay nhiều số mà không cần liệt kê bội chung của các số hay không ? 
Ví dụ: Tìm BCNN (8; 18; 30) 
BCNN (8; 18; 30) = 
= 360 
Phân tích mỗi số ra thừa số nguyên tố 
Chọn ra các thừa số nguyên tố chung và riêng. 
Tính tích các thừa số đã chọn, mỗi thừa số lấy số mũ lớn nhất của nó 
Bài 18: 
BỘI CHUNG NHỎ NHẤT 
II/ Tìm BCNN bằng cách phân tích các số ra thừa số nguyên tố: 
Muốn tìm BCNN của 2 hay nhiều số lớn hơn 1,ta thực hiện 3 bước sau: 
Phân tích mỗi số ra thừa số nguyên tố. 
Bước 1 : 
Chọn ra các thừa số nguyên tố chung và riêng. 
Bước 2 : 
Tính tích của các thừa số đã chọn, mỗi thừa số lấy số mũ lớn nhất của nó. Tích đó là BCNN cần tìm. 
3 
Bước 3 : 
So sánh cách tìm ƯCLN và BCNN? 
B.1: Phân tích mỗi số ra thừa số nguyên tố. 
B.1: Phân tích mỗi số ra thừa số nguyên tố. 
Giống nhau bước 1 
B.2: Chọn ra các thừa số nguyên tố chung. 
B.2: Chọn ra các thừa số nguyên tố chung và riêng. 
Khác nhau bước 2 chỗ nào nhỉ? 
chung 
chung và riêng 
B.3: Lập tích các thừa số đã chọn, mỗi thừa số lấy số mũ nhỏ nhất của nó. 
 B.3: Lập tích các thừa số đã chọn, mỗi thừa số lấy số mũ lớn nhất của nó. 
Lại khác nhau ở bước 3 chỗ nào? 
số mũ nhỏ nhất 
số mũ lớn nhất 
CÁCH TÌM ƯCLN 
CÁCH TÌM BCNN 
Bài 18: 
BỘI CHUNG NHỎ NHẤT 
Tìm BCNN (8; 12), BCNN(5; 7; 8), BCNN(12; 16; 48) 
Chú ý: 
Ví dụ: 3 số 5, 7, 8 không có thừa số nguyên tố 
 chung nên BCNN(5; 7; 8) = 5.7.8 = 280 
Ví dụ: Xét 3 số 12; 16; 48, ta có 48 chia hết cho 
 cả 12 và 16 nên BCNN(12; 16; 48) = 48. 
24 
280 
48 
1/ Nếu các số đã cho từng đôi một nguyên tố cùng nhau thì BCNN của chúng là tích của các số đó. 
2/ Trong các số đã cho, nếu số lớn nhất là bội của các số còn lại thì BCNN của chúng là số lớn nhất ấy. 
Để tìm bội chung của các số, ta có thể tìm BCNN của 
chúng, rồi tìm các bội của BCNN đó. 
Ví dụ: Cho A ={ } 
Viết tập hợp A bằng cách liệt kê các phần tử. 
Giải: 
Theo đề bài ta có x ϵ BC(8; 18; 30) và x < 1000. 
BCNN(8; 18; 30) = 2 3 .3 2 .5 = 360 
BC(8; 18; 30) = B(360) = {0; 360; 720; 1080;} 
Vậy A = {0; 360; 720} 
360.0 
360.1 
360.2 
360.3 
 8 = 2 3 
18 = 2.3 2 
30 = 2.3.5 
III/ Cách tìm bội chung thông qua tìm BCNN: 
Câu 1: 
BCNN của 60 và 280 là: 
Bài 18: 
BỘI CHUNG NHỎ NHẤT 
a. 840 
b. 280 
c. 420 
d. 120 
Đúng! 
Bạn giỏi quá!! 
Chưa chính xác rồi! 
Chưa chính xác rồi! 
Chưa chính xác rồi! 
Luyện tập 
Bài 18: 
BỘI CHUNG NHỎ NHẤT 
d. 60 
b. 30 
c. 15 
a. 40 
Đúng! 
Hoan hô bạn!! 
Chưa chính xác rồi! 
Chưa chính xác rồi! 
Chưa chính xác rồi! 
Câu 2: 
BCNN của 10, 12 và 15 là: 
Bài 18: 
BỘI CHUNG NHỎ NHẤT 
c. 792 
b. 72 
b. 88 
a. 99 
Đúng! 
Hoan hô bạn!! 
Chưa chính xác rồi! 
Chưa chính xác rồi! 
Chưa chính xác rồi! 
Câu 3: 
BCNN của 8, 9 và 11 là: 
Củng cố 
 * Tr­íc hÕt h·y xÐt xem c¸c sè cÇn t×m BCNN cã r¬i vµo mét trong ba tr­êng hîp ® Æc biÖt sau hay kh«ng : 
 1) NÕu trong c¸c sè cÇn t×m BCNN cã mét sè b»ng 1 
th × BCNN cña c¸c sè ®· cho b»ng BCNN cña c¸c sè cßn l¹i 
 2) NÕu sè lín nhÊt trong c¸c sè cÇn t×m BCNN lµ béi cña c¸c sè cßn l¹i 
 th × BCNN cña c¸c sè ®· cho chÝnh lµ sè lín nhÊt Êy . 
3) NÕu c¸c sè cÇn t×m BCNN ®«i mét nguyªn tè cïng nhau 
C¸ch 1: Dùa vµo ® Þnh nghÜa BCNN. 
th × BCNN cña c¸c sè ®· cho b»ng tÝch cña c¸c sè ® ã . 
1. Béi chung nhá nhÊt lµ sè nh ­ thÕ nµo ? 
§Ó t×m BCNN cña hai hay nhiÒu sè ta cÇn l­u ý: 
* NÕu kh«ng r¬i vµo ba tr­êng hîp trªn khi ® ã ta sÏ lµm theo mét trong hai c¸ch sau : 
C¸ch 2: Dùa vµo quy t¾c t×m BCNN. 
2. C¸ch t×m BCNN: 
 HiÓu vµ n¾m v÷ng quy t¾c t×m BCNN cña hai hay nhiÒu sè . 
- So s¸nh hai quy t¾c t×m BCNN vµ t×m ¦CLN. 
 Lµm bµi tËp 150; 151 ( SGK/59); 188 (SBT/25) 
H­íng dÉn vÒ nh µ 
Chào tạm biệt 

File đính kèm:

  • pptbai_giang_dien_tu_dai_so_khoi_6_chuong_1_bai_18_boi_chung_nh.ppt