Bài giảng môn Đại số Lớp 8 - Bài 6: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung (Chuẩn kiến thức)

Phân tích đa thức thành nhân tử ( hay thừa số) là

 biến đổi đa thức đó thành một tích của những đa thức

Cách tìm nhân tử chung với các đa thức có hệ số nguyên

+ Hệ số là ƯCLN của các hệ số nguyên dương của các hạng tử

+ các lũy thừa bằng chữ có mặt trong mọi hạng tử với số mũ của mỗi lũy thừa là số mũ nhỏ nhất của nó,

Bài 39 Phân tích đa thức sau thành nhân tử

c) 14x2y – 21xy2 +28x2y2

e) 10x(x – y) – 8y(y – x)

 

ppt9 trang | Chia sẻ: tranluankk2 | Ngày: 12/04/2022 | Lượt xem: 192 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Bài giảng môn Đại số Lớp 8 - Bài 6: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung (Chuẩn kiến thức), để tải tài liệu về máy bạn click vào nút TẢI VỀ ở trên
Câu hỏi kiểm tra bài cũ : 
Tính nhanh giá trị biểu thức : 
Tính nhanh giá trị biểu thức : 
B ài 1 
B ài 2 
85.12,7 + 15.12,7 
52.143 - 52.39 – 4.52 
Nêu quy tắc nhân 1 đơn thức với 1 đa thức ? 
A.(B + C) 
A.B + A.C 
= A .B + A .C 
A .(B + C) 
= A .(B + C) 
A .B + A .C 
3 x + 3 y 
Áp dụng : Viết đa thức 3x+ 3y thành một tích ? 
= 3 .(x + y) 
Viết đa thức 2x 2 - 4x thành một tích của những đa thức ? 
Gợi ý: ta thấy 2x 2 = 2x .x 
 4x = 2x .2 
Giải : 2x 2 – 4x 
Việc viết các đa thức 3x +3y thành 3 (x + y)và 
2x 2 – 4x thành 2x(x – 2) gọi là phân tích đa thức thành nhân tử 
Vậy phân tích đa thức thành nhân tử là gì ? Bài học hôm nay chúng ta cùng nghiên cứu 
= 2x .x – 2x .2 
= 2x (x – 2) 
1. ThÕ nµo lµ ph©n tÝch ®a thøc thµnh nh©n tö ? 
Ph©n tÝch ®a thøc thµnh nh©n tö ( hay thõa sè ) lµ biÕn ® æi ®a thøc ® ã thµnh mét tÝch cña nh÷ng ®a thøc 
TiẾT 9 §6 PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ BẰNG PHƯƠNG PHÁP ĐẶT NHÂN TỬ CHUNG 
Việc viết các đa thức 3x +3y thành 
3 (x + y)và 2x 2 – 4x thành 2x(x – 2) gọi là phân tích đa thức thành nhân tử 
Ví dụ phân tích đa thức 15x 3 – 5x 2 +10x thành nhân tử 
Giải 15x 3 - 5x 2 +10x = 
2. Áp dụng 
Cách tìm nhân tử chung với các đa thức có hệ số nguyên 
+ Hệ số là ƯCLN của các hệ số nguyên dương của các hạng tử 
+ các lũy thừa bằng chữ có mặt trong mọi hạng tử với số mũ của mỗi lũy thừa là số mũ nhỏ nhất của nó , 
Trong ví dụ này nhân tử chung là 5x 
Hệ số của nhân tử chung (5) có quan hệ gì với các hệ số nguyên dương của các hạng tử (15;5;10)? 
Lũy thừa bằng chữ của nhân tử chung (x) có quan hệ như thế nào với lũy thừa bằng chữ của các hạng tử ? 
5 là ƯCLN (15;5;10) 
x có mặt trong tất cả các hạng tử của đa thức , với số mũ là số mũ nhỏ nhất của nó trong các hạng tử 
5x .3x 2 
– 5x .x 
+ 5x .2 
= 5x (3x 2 - x +2) 
5 là hệ số 
x là biến số 
1. ThÕ nµo lµ ph©n tÝch ®a thøc thµnh nh©n tö ? 
Ph©n tÝch ®a thøc thµnh nh©n tö ( hay thõa sè ) lµ biÕn ® æi ®a thøc ® ã thµnh mét tÝch cña nh÷ng ®a thøc 
BÀI 6 TiẾT 9 PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ BẰNG PHƯƠNG PHÁP ĐẶT NHÂN TỬ CHUNG 
Ví dụ phân tích đa thức 15x 3 – 5x 2 +10x thành nhân tử 
Giải 15x 3 - 5x 2 +10x = 5x .x 2 – 5x .x + 5x .2 = 5x (x 2 - x +2) 
2. Áp dụng 
Cách tìm nhân tử chung với các đa thức có hệ số nguyên 
+ Hệ số là ƯCLN của các hệ số nguyên dương của các hạng tử 
+ các lũy thừa bằng chữ có mặt trong mọi hạng tử với số mũ của mỗi lũy thừa là số mũ nhỏ nhất của nó , 
?1 
Phân tích đa thức sau thành nhân tử 
x 2 - x 
5x 2 (x-2y) – 15x(x-2y) 
3(x-y)- 5x(y-x) 
a)x 2 – x 
b) 	5x 2 (x – 2y) – 15x(x – 2y) 
= x .x – x .1 
= x .(x – 1) 
= (x – 2y) .(5x 2 – 15x) 
(x – 2y) – 15x (x – 2y) 
= (x – 2y). (5x 2 – 15x) 
= (x – 2y). 5x .(x– 3) 
= 5x(x – 2y)(x – 3) 
(5x 2 – 15x) 
= 5x.(x – 3) 
c)	3(x – y) – 5x(y – x) 
= 3(x – y) + 5x(x – y) 
= 3 (x – y) + 5x (x – y) 
= (x – y) (3 + 5x) 
c)	3(x – y) – 5x(y – x) 
 Trong một số bài toán , đôi khi phải đổi dấu hạng tử để xuất hiện nhân tử chung 
 A = – ( – A) 
?1 
?2 
1. ThÕ nµo lµ ph©n tÝch ®a thøc thµnh nh©n tö ? 
Ph©n tÝch ®a thøc thµnh nh©n tö ( hay thõa sè ) lµ biÕn ® æi ®a thøc ® ã thµnh mét tÝch cña nh÷ng ®a thøc 
BÀI 6 TiẾT 9 PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ BẰNG PHƯƠNG PHÁP ĐẶT NHÂN TỬ CHUNG 
Ví dụ phân tích đa thức 15x 3 – 5x 2 +10x thành nhân tử 
Giải 15x 3 - 5x 2 +10x = 5x .x 2 – 5x .x + 5x .2 = 5x (x 2 - x +2) 
2. Áp dụng 
Cách tìm nhân tử chung với các đa thức có hệ số nguyên 
+ Hệ số là ƯCLN của các hệ số nguyên dương của các hạng tử 
+ các lũy thừa bằng chữ có mặt trong mọi hạng tử với số mũ của mỗi lũy thừa là số mũ nhỏ nhất của nó , 
 Trong một số bài toán , đôi khi phải đổi dấu hạng tử để xuất hiện nhân tử chung 
 (A) = – ( – A) 
?1 
?2 
? 2 Tìm x, sao cho : 
3x 2 – 6x = 0 
3x . (x – 2) = 0 
a . b = 0 
Khi a = 0 hoặc b = 0 
Khi : 3x = 0 hoặc x – 2 = 0 
Hay: x = 0 hoặc x = 2 
3x. x – 3x. 2 = 0 
1. ThÕ nµo lµ ph©n tÝch ®a thøc thµnh nh©n tö ? 
Ph©n tÝch ®a thøc thµnh nh©n tö ( hay thõa sè ) lµ biÕn ® æi ®a thøc ® ã thµnh mét tÝch cña nh÷ng ®a thøc 
BÀI 6 TiẾT 9 PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ BẰNG PHƯƠNG PHÁP ĐẶT NHÂN TỬ CHUNG 
Ví dụ phân tích đa thức 15x 3 – 5x 2 +10x thành nhân tử 
Giải 15x 3 - 5x 2 +10x = 5x .x 2 – 5x .x + 5x .2 = 5x (x 2 - x +2) 
2. Áp dụng 
Cách tìm nhân tử chung với các đa thức có hệ số nguyên 
+ Hệ số là ƯCLN của các hệ số nguyên dương của các hạng tử 
+ các lũy thừa bằng chữ có mặt trong mọi hạng tử với số mũ của mỗi lũy thừa là số mũ nhỏ nhất của nó , 
 Trong một số bài toán , đôi khi phải đổi dấu hạng tử để xuất hiện nhân tử chung 
 (A) = – (– A) 
?1 
?2 
3. Luyện Tập củng cố 
Bài 39 Phân tích đa thức sau thành nhân tử 
c) 14x 2 y – 21xy 2 +28x 2 y 2 
e) 10x(x – y) – 8y(y – x) 
Giải 
c) 14x 2 y – 21xy 2 +28x 2 y 2 
 = 7xy .2x – 7xy .3y + 7xy .4xy 
= 7xy (2x – 3y +4xy) 
e) 10x(x – y) – 8y(y – x) 
=10x(x – y) + 8y(x - y) 
= ( x – y )( 10x + 8y) 
= ( x – y ).2( 5x + 4y) 
= 2( x – y )( 5x + 4y) 
=10x( x – y ) + 8y( x - y ) 
Bài 41(a) Tìm x 
5x(x – 2000) – x +2000 = 0 
5x(x – 2000) – (x – 2000) = 0 
(x – 2000)(5x – 1) = 0 
Khi . x- 2000 = 0 hoặc 5x - 1 = 0 
Hay x =2000 hoặc x = 1/5 
1. ThÕ nµo lµ ph©n tÝch ®a thøc thµnh nh©n tö ? 
Ph©n tÝch ®a thøc thµnh nh©n tö ( hay thõa sè ) lµ biÕn ® æi ®a thøc ® ã thµnh mét tÝch cña nh÷ng ®a thøc 
BÀI 6 TiẾT 9 PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ BẰNG PHƯƠNG PHÁP ĐẶT NHÂN TỬ CHUNG 
Ví dụ phân tích đa thức 15x 3 – 5x 2 +10x thành nhân tử 
Giải 15x 3 - 5x 2 +10x = 5x .x 2 – 5x .x + 5x .2 = 5x (x 2 - x +2) 
2. Áp dụng 
Cách tìm nhân tử chung với các đa thức có hệ số nguyên 
+ Hệ số là ƯCLN của các hệ số nguyên dương của các hạng tử 
+ các lũy thừa bằng chữ có mặt trong mọi hạng tử với số mũ của mỗi lũy thừa là số mũ nhỏ nhất của nó , 
 Trong một số bài toán , đôi khi phải đổi dấu hạng tử để xuất hiện nhân tử chung 
 (A) = – ( – A) 
?1 
?2 
3. Luyện Tập củng cố 
Thế nào là phân tích đa thức thành nhân tử ? 
Khi phân tích đa thức thành nhân tử phải đạt yêu cầu gì ? 
Nêu cách tìm nhân tử chung của các đa thức có hệ số nguyên 
Muốn tìm các số hạng viết trong ngoặc sau nhân tử chung ta làm như thế nào 
1. ThÕ nµo lµ ph©n tÝch ®a thøc thµnh nh©n tö ? 
Ph©n tÝch ®a thøc thµnh nh©n tö ( hay thõa sè ) lµ biÕn ® æi ®a thøc ® ã thµnh mét tÝch cña nh÷ng ®a thøc 
BÀI 6 TiẾT 9 PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ BẰNG PHƯƠNG PHÁP ĐẶT NHÂN TỬ CHUNG 
Ví dụ phân tích đa thức 15x 3 – 5x 2 +10x thành nhân tử 
Giải 15x 3 - 5x 2 +10x = 5x .3x 2 – 5x .x + 5x .2 = 5x (3x 2 - x +2) 
2. Áp dụng 
Cách tìm nhân tử chung với các đa thức có hệ số nguyên 
+ Hệ số là ƯCLN của các hệ số nguyên dương của các hạng tử 
+ các lũy thừa bằng chữ có mặt trong mọi hạng tử với số mũ của mỗi lũy thừa là số mũ nhỏ nhất của nó , 
 Trong một số bài toán , đôi khi phải đổi dấu hạng tử để xuất hiện nhân tử chung 
 (A) = – ( – A) 
?1 
?2 
3. Luyện Tập củng cố 
Bài 39 Phân tích đa thức sau thành nhân tử 
c) 14x 2 y – 21xy 2 +28x 2 y 2 
e) 10x(x – y) – 8y(y – x) 
Giải 
c) 14x 2 y – 21xy 2 +28x 2 y 2 
 = 7xy .2x – 7xy .3y + 7xy .4xy 
= 7xy (2x – 3y +4xy) 
e) 10x(x – y) – 8y(y – x) 
= ( x – y )( 10x + 8y) 
= ( x – y ).2( 5x + 4y) 
= 2( x – y )( 5x + 4y) 
=10x( x – y ) + 8y( x - y ) 
Bài 41(a) Tìm x 
5x(x – 2000) – x +2000 = 0 
5x(x – 2000) – (x – 2000) = 0 
(x – 2000)(5x – 1) = 0 
Khi . x- 2000 = 0 hoặc 5x - 1 = 0 
Hay x =2000 hoặc x = 1/5 
Hướng dẫn về nhà 
Làm các bài tập 39a,b,d ; 40 ; 41; 42 trang 19 SGK 
Ôn lại các hằng đẳng thức đáng nhớ 
Nghiên cứu phương pháp phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức . 

File đính kèm:

  • pptbai_giang_mon_dai_so_lop_8_bai_6_phan_tich_da_thuc_thanh_nha.ppt