Chương 1: Công thức lượng giác
Trên mặt phẳng Oxy cho đường tròn lượng giác tâm O bán kính R=1 và điểm M
trên đường tròn lượng giác mà sđAM=ßvới 02=ß= p
Đặt k2 , k Z a=ß+ p ?
Ta định nghĩa:
30 tg40 tg50 tg60 cos20 3 + + + = o ( )sin a btga tgb cosa cos b ++ = Áp dụng : Ta có : )o( ) (o o otg50 tg40 tg30 tg60+ + + o o o o o sin90 sin90 cos50 cos40 cos30 cos60 = + o o o o 1 1 1sin40 cos40 cos30 2 = + o o 2 2 sin80 cos30 = + o o 1 12 cos10 cos30 ⎛ ⎞= +⎜ ⎟⎝ ⎠ o o o o cos30 cos102 cos10 cos30 ⎛ ⎞+= ⎜ ⎟⎝ ⎠ p o o o s20 cos10 co4 cos10 cos30 = o8 3 cos20 3 = Bài 19 : Cho ABCΔ , Chứng minh : a/ A B CsinA sinB sinC 4cos cos cos 2 2 + + = 2 A b/ B CcA cosB cosC 1 4sin sin sin 2 2 2 + + = + so c/ sin 2A sin 2B sin 2C 4sin A sinBsinC+ + = d/ 2 2A 2cos cos B cos C 2cosA cosBcosC+ + = − e/ tgA tgB tgC tgA.tgB.tgC+ + = f/ =cot gA.cot gB cot gB.cot gC cot gC.cot gA 1+ + g/ + + =A B C A Bcot g cot g cot g cot g .cot g .cot g 2 2 2 C 2 2 2 a/ Ta có : ( )A B A BsinA sinB sinC 2sin cos sin A B 2 2 + −+ + = + + A B A B A B2sin= cos cos 2 2 2 + − +⎛ ⎞+⎜ ⎟⎝ ⎠ + π⎛ ⎞= =⎜ ⎟⎝ ⎠ C A B A B C4cos cos cos do 2 2 2 2 2 2 − b/ Ta có : ( )A B A BcosA cosB cosC 2cos cos cos A B 2 2 + −+ + = − + 2A B A B A B2cos cos 2cos 1 2 2 2 + − +⎛ ⎞= − ⎜ ⎟⎝ ⎠ − A B A B A B2cos cos cos 1 2 2 2 + − +⎡ ⎤= −⎢ ⎥⎣ ⎦ + A B A B4cos sin sin 1 2 2 2 + ⎛ ⎞− +⎜ ⎟⎝ ⎠ = − C A B4sin sin sin 1 2 2 2 = + ( ) ( )sin2A sin2B sin2C 2sin A B cos A B 2sinCcosC+ = + − + c/ = − +2sinCcos(A B) 2sinCcosC = − −2sinC[cos(A B) cos(A B) ] + d/ 2 = − −4sinCsinAsin( B) = 4sinCsin A sinB + +2 2cos A cos B cos C ( ) 211 cos2A cos2B cos C 2 = + + + ( ) ( ) 21 cos A B cos A B cos C= + + − + ( )1 B= cosC cos A− −⎡ ⎤⎣ ⎦ do ( )( )cos A B cosC+ = − cosC− ( ) ( )1 cosC cos A B cos A B= − − + +⎡ ⎤⎣ ⎦ 1 2cosC.cosA.cosB= − e/ Do nên ta có g A B tgC+ = − a b C+ = π − ( ) t tgA tgB tgC 1 tgAtgB + = −− ⇔ ⇔ tgC tgA tgB tgC tgAtgB+ = − + ⇔ a có : cotg(A+B) = - cotgC tgA tgB tgC tgAtgBtgC+ + = f/ T 1 tgAtgB cot gC⇔ tgA + tgB − = − ⇔ cot gA cot gB 1 cot gC cot gB cot gA − = −+ (nhân tử và mẫu cho cotgA.cotgB) ⇔ = g/ Ta có : cot gA cot gB 1 cot gCcot gB cot gA cot gC− = − − ⇔ cot gA cot gB cot gBcot gC cot gA cot gC 1+ + A B Ctg cot g 2 2 + = ⇔ A Btg tg C2 2 cot gA B 21 tg tg 2 2 + = − A Bcot g cot g C2 2 cot gA B 2cot g .cot g 1 2 2 + = − .cotg B 2 A 2 ⇔ (nhân tử và mẫu cho cotg ) ⇔ A B A B C Ccot g 2 + cot g cot g cot g cot g cot g 2 2 2 2 2 = − A B C A B⇔ C.cot g .cot g 2 2 2 Bài 20 : cot g cot g cot g cot g 2 2 2 + + = ABC . Chứng minh : Cho Δ cos2A + cos2B + cos 2C + 4cosAcosBcosC + 1 = 0 Ta có : (cos2A + cos2B) + (cos2C + 1) = 2 cos (A + B)cos(A - B) + 2cos2C = - 2cosCcos(A - B) + 2cos2C = - 2cosC[cos(A – B) + cos(A + B)] = - 4cosAcosBcosC Do đó : cos2A + cos2B + cos2C + 1 + 4cosAcosBcosC = 0 Bài 21 : ABCΔ Cho . Chứng minh : 3A 3B 3C4sin sin sin 2 2 cos3A + cos3B + cos3C = 1 - 2 Ta có : (cos3A + cos3B) + cos3C 23 32cos (A B)cos (A B) 1 2sin 2 2 = + − + − 3C 2 Mà : A B C+ = π − nên ( )3 3A B 2 2 + = π − 3C 2 => ( )3cos A B cos+ = 3 3C 2 2 2 π⎛ ⎞−⎜ ⎟⎝ ⎠ 3Ccos 2 2 π⎛ ⎞= − −⎜ ⎟⎝ ⎠ 3Csin 2 = − Do đó : cos3A + cos3B + cos3C ( ) 23 A B3C 3C2sin cos 2sin 1 2 2 2 −= − − + ( )3 A B3C 3C2sin cos sin 1 2 2 2 −⎡ ⎤= − + +⎢ ⎥⎣ ⎦ ( ) ( )3 A B3C 32sin cos cos A B 1 2 2 2 = − − +⎢⎣ −⎡ ⎤ +⎥⎦ −= +3C 3A 3B4sin sin sin( ) 1 2 2 2 3C 3A 3B4sin sin sin 1 2 2 2 = − + Bài 22 : A, B, C là ba góc của một tam giác. Chứng minh : sinA sinB sinC A B Ctg tg cot g cosA cosB cosC 1 2 2 2 + − =+ − + 2 A B A B C C2sin cos 2sin cossinA sinB sinC 2 2 2 A B A B CcosA cosB cosC 1 2cos cos 2sin 2 2 2 2 + − −+ − = + −+ − + + Ta có : C A B C A B A2cos cos sin cos cosC2 2 2 2 2cot g . B A B AC A B C 2 cos cos2sin cos sin 2 22 2 2 −⎡ ⎤ B − +− −⎢ ⎥⎣ ⎦= = − +−⎡ ⎤ ++⎢ ⎥⎣ ⎦ A B2sin C 2 2 − .sin cot g . A B2 2cos .cos 2 2 ⎛ ⎞−⎜ ⎟⎝ ⎠= C A Bcot g .tg .tg 2 2 = 2 Bài 23 : Cho ABCΔ h : . Chứng min A B C B C A C A Bsin cos cos sin cos cos sin cos cos 2 2 2 2 2 2 2 2 2 + + ( )A B C A B B C A Csin sin sin gtg tg tg t tg tg * 2 2 2 2 2 2 2 2 2 = + + + ATa có : B C 2 2 2 + π= − vậy A B Ctg cot g 2 2 2 ⎛ ⎞+ =⎜ ⎟⎝ ⎠ ⇔ A Btg tg 12 2 A B C1 tg tg tg 2 2 2 + = − ⇔ A B C Atg tg tg 1 tg tg 2 2 2 2 ⎡ ⎤+ = −⎢ ⎥⎣ ⎦ B 2 ⇔ ( )A C B C A Btg tg tg tg tg tg 1 1 2 2 2 2 2 2 + + = A B C B C Ac sin cos cos C A Bsin os cos sin cos cos 2 2 2 2 2 2 2 2 2 + + Do đó : (*) Ù A B Csin sin sin 1 2 2 2 = + (do (1)) A B C B C A B C C Bsin 2 ⇔ cos cos sin sin cos sin cos sin cos 1 2 2 2 2 2 2 2 2 2 ⎡ ⎤ ⎡ ⎤− + + =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⇔ A B C A B Csin cos cos sin 1 2 2 2 2 + ++ = ⇔ A B Csin 1 2 + + = π⇔ =sin 1 2 ( hiển nhiên đúng) Bài 24 : ( )A B C 3 cosA cosB cosCtg tg tg * 2 2 2 sinA sinB sinC + + ++ + = + + Chứng minh : Ta có : 2A B A B CcosA cosB cosC 3 2cos cos 1⎡ 2sin 3 2 2 2 + − ⎤+ + = + +⎥⎣ ⎦ −⎢+ 2C A B2sin cos 4 2s C 2 2 2 − in= + − C A B C2sin cos sin 4 2 2 2 −⎡ ⎤− +⎢ ⎥⎣ ⎦ = C A B A B2sin cos cos 4 2 2 2 − +⎡ ⎤− +⎢ ⎥⎣ ⎦ = C A Bin4sin sin .s 4 2 2 2 + (1) = A B A BsinA sinB sinC 2sin cos sinC 2 2 + −+ + = + C A B C2cos cos 2sin cos 2 2 2 C 2 −= + C A B A B2cos cos cos 2 2 2 − +⎡ ⎤= +⎢ ⎥⎣ ⎦ C A B Từ (1) và (2) ta có : 4cos cos cos 2 2 2 = (2) (*) ⇔ A B C A B Csin sin sin sin sin sin 1 2 2 2 2 2 2 A B C A B Ccos cos cos cos co + s cos 2 2 2 2 2 2 + + = A B C B A C C A Bsin cos cos sin cos cos sin cos cos 2 2 2 2 2 2 2 2 2 ⎡ ⎤ ⎡ ⎤ ⎡+ +⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣ ⎤⎥⎦ ⇔ A B Csin sin sin 1 2 2 2 = + ⇔ A B C B C A B C C Bsin cos cos sin sin cos sin cos sin cos 1 2 2 2 2 2 2 2 2 2 2 ⎡ ⎤ ⎡− + +⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎤ =⎥⎦ ⇔ A B C A+ B Csin .cos cos sin 1 2 2 2 2 ++ = A⇔ B C 1 2 + + ⎤ =⎢ ⎥⎣ ⎦ sin ⎡ ⇔ sin π 1 2 = ( hiển nhiên đúng) Bài 25 : . Chứng minh: A B Csin sin sin 2 2 2 2B C C A A Bcos cos cos cos cos cos 2 2 2 2 2 2 + + = ABCΔ Cho Cách 1 : Ta có : A B A A Bsin sin sin cos sin cos 2 2 2 2 2 B C C A B 2 B Ccos cos cos cos cos cos cos 2 2 2 2 2 2 2 + + = A A B Asin cos BsinA sinB 2 2 + 1 A B C A B C2 cos cos cos cos cos cos 2 2 2 2 2 2 − + = = −⎛ ⎞− ⎜ ⎟⎝ ⎠= = A BC A B coscos .cos 22 2 A B C Acos .cos .cos cos cos 2 2 2 2 B 2 Do đó : Vế trái A B C A B Acos sin cos cos2 2 2 A B A B A Bcos cos cos cos cos cos 2 2 2 2 B 2 2 −⎛ ⎞ − ++⎜ ⎟⎝ ⎠= + = 2 A B2cos cos 2 2 2A Bcos cos 2 2 = = Cách 2 : B C A C A Bcos cos cos 2 2 B C C A A Bcos cos cos cos cos cos 2 2 2 2 2 + + + = + + 2 2 Ta có vế trái B C B C A C A Ccos cos sin sin cos cos sin sin 2 2 2 2 2 2 2 B C C Acos cos cos cos 2 2 2 2 − − = + 2 A B Acos cos sin sin 2 2 2 A Bcos cos 2 2 − + B 2 B C A C A B3 g tg tg tg tg tg t 2 2 2 2 2 2 ⎡ ⎤= − + +⎢ ⎥⎣ ⎦ Mà : A B B C A Btg tg tg tg tg tg 1 2 2 2 2 2 2 + + = (đã chứng minh tại b Do đó : Vế trái = 3 – 1 = 2 Bài 26 : ài 10 ) . Có A B Ccot g ,cot g ,cot g 2 2 ABCΔ Cho 2 theo tứ tự tạo cấp số cộng. A Ccot g .cot g 3 2 2 = Chứng minh A B Ccot g ,cot g ,cot g 2 2 Ta có : 2 là cấp số cộng ⇔ A C Bcot g cot g 2cot g 2 2 + = 2 ⇔ + = A Csin 2cos 2 2 B A C Bsin sin sin 2 2 2 ⇔ Bcos 2cos 2 2 B A C Bsin sin sin 2 2 2 = nên Bcos 0 2 >⇔ = + 1 2 A C A Csin sin cos 2 2 2 (do 0<B<π ) ⇔ A C A Ccos cos sin sin 2 2 2 2 2A Csin .sin 2 2 − ⇔ A Ccot g cot g 3= 2 2 = Bài 27 : ABCΔ Cho . Chứng minh : 1 t+ 1 1 1 A B C A B Ctg tg tg cot g co g cot g sin A sinB sinC 2 2 2 2 2 2 2 ⎡ ⎤+ = + + + + +⎢ ⎥⎣ ⎦ A B C A Bcot g cot g cot g cot g .cot g .cot g 2 2 2 2 2 + + = Ta có : C 2 (Xem chứng minh bài 19g ) Mặt khác : sin cos 2tg cot g cos sin sin2 α αα + α = + =α α α 1 A B C A B Ctg tg tg cotg cotg cotg 2 2 2 2 2 2 2 ⎡ ⎤+ + + + +⎢ ⎥⎣ ⎦ Do đó : 1 A B C 1 Acotg⎡ +⎢ B Ctg tg tg cotg cotg 2 2 2 2 2 2 ⎡ ⎤ ⎤= + + + +⎢ ⎥ ⎥⎣ ⎦ ⎣ ⎦ 2 2 1 A A 1 B B 1 C Ctg cot g tg cot g tg cot g 2 2 2 2 2 2 2 2 2 ⎡ ⎤ ⎡ ⎤ ⎡= + + + + +⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣ ⎤⎥⎦ 1 1 1 sinA sinB sinC = + + BÀI TẬP 1. Chứng minh : a/ 2 1cos cos 5 5 π π− = 2 b/ o o o o cos15 sin15 3 cos15 sin15 + =− 2 4 6cos cos cos 7 7 7 π π π+ + = c/ 1 2 − d/ 3+ =3 3sin 2xsin6x cos 2x.cos6x cos 4x o o o otg20 .tg40 .tg60 .tg80 3= e/ π π π π+ + + =2 5 π3tg tg tg cos 6 9 18 3 3 9 8tgf/ 7 2 3 4 5 6 7 1os .cos .cos .cos .cos .cos .cos 15 15 15 15 15 15 15 2 π π π π π π = c πg/ h/ tgx.tg x .tgπ⎡ ⎤−⎢ ⎥ x tg3x3 3 π⎡ ⎤+ =⎢ ⎥⎣ ⎦ ⎣ ⎦ k/ o o o otg20 tg40 3tg20 .tg40 3+ + = o o o 3sin 20 .sin 40 .sin 80e/ 8 = m/ o o o otg5 .tg55 .tg65 .tg75 1= ( ) 2. Chứng minh rằng nếu ( ) (x y 2k 1 k z 2 π+ ≠ + ∈⎪⎩ ) x y+ thì sin x 2sin=⎧⎪⎨ sin( ) cos ytg x y y + = − 2 3. Cho có 3 góc đều nhọn và A B C≥ ≥ ABCΔ a/ Chứng minh : tgA + tgB + tgC = tgA.tgB.tgC b/ Đ Chứng minh (p-1)(q-1) ặt tgA.tgB = p; tgA.tgC = q 4 4. Chứng minh các biểu thức không phụ thuộc x : a/ ≥ ( ) ( )4 2 4 2 2 2A sin x 1 sin x cos x 1 cos x 5sin x cos x 1= + + + + + ( ) ( )8 8 6 6B 3 sin x cos x 4 cos x 2sin x 6sin x= − + − + b/ 4 c/ ( ) ( ) ( ) ( ) (2 2C cos x a sin x b 2cos x a sin x b sin a b= − + − − − − − ) 5. Cho , chứng minh : ABCΔ cosC cosBcota/ gB cot gC sinBcosA sinCcosA + = + b/ 3 3 3 A B CC 3cos cos cos co 3A 3B 3Cs cos cos 2 2 2 2 2 2 = + sin A sin B sin+ + A B C B A CsinA sinB sic/ nC scos .co cos .cos 2 2 2 2 − −+ + + = C Acos .co B 2 2 −s+ otgAcotgB + cotgBcotgC + cotgC otgA = 1 s C 1 2cosA cosBcosC= − in3Asin(B- C)+ sin3Bsin(C- A)+ sin3Csin(A- B) = 0 6. Tìm giá trị nhỏ nhất của : d/ c c e/ 2 2cos A cos B co+ + 2 f/ s 1 1y sin x cos x = + với 0 x 2 π< < a/ π= + +9y 4x sin x x với 0 x< < ∞ b/ 2y 2sin x 4sin x cos x 5= + + c/ 7. Tìm giá trị lớn nhất của : a/ y sin x cos x cos x sin x= + b/ y = sinx + 3sin2x c/ 2y cos x 2 cos x= + − TT luyện thi đại học CLC Vĩnh Viễn
File đính kèm:
- Chuong1 - Cong thuc luong giac.pdf