Chương 2: Phương trình lượng giác cơ bản
Bài 28 :(Đề thi tuyển sinh Đại học khối D,năm 2002)
[ ] x0,14 ? nghiệm đúng phương trình Tìm
( ) cos 3x 4 cos 2x 3 cos x 4 0 * -+-=
2 *− = Điều kiện 3 cos x 0 cos 3x 4 cos x 3cos x 0 ≠⎧⎨ = − ≠⎩ π π⇔ ≠ ⇔ ≠ + hcos3x 0 x 6 3 Lúc đó ta có (*) ⇔ ( )tgx tgx tg3x 2− = ⇔ sin x sin x sin 3x 2 cos x cos x cos 3x ⎛ ⎞− =⎜ ⎟⎝ ⎠ ⇔ ( ) 2sin x sin x cos 3x cos x sin 3x 2 cos x cos 3x− = ⇔ ( ) 2sin x sin 2x 2 cos x.cos 3x− = ⇔ 2 22sin x cos x 2cos x cos3x− = ⇔ (do cos2sin x cos x cos3x− = x 0≠ ) ⇔ ( ) ( )1 11 cos 2x cos 4x cos 2x 2 2 − − = + ⇔ cos4x 1 4x k2= − ⇔ = π + π ⇔ ( )kx k 4 2 π π= + ∈ Z so với điều kiện Cách 1 : Khi kx 4 2 π= + π thì ( )3 3k 2cos 3x cos 0 nhận 4 2 2 π π⎛ ⎞= + = ± ≠⎜ ⎟⎝ ⎠ Cách 2 : Biểu diễn các ngọn cung điều kiện và ngọn cung nghiệm ta thấy không có ngọn cung nào trùng nhau. Do đó : (*) ⇔ kx 4 2 π π= + Lưu ý cách 2 rất mất thời gian Cách 3 : Nếu π π π= + = +3 3k3x h 4 2 2 π h 6k Thì + = +3 6k 2 4h ⇔1 4 = − ⇔ = −1 2h 3k 2 (vô lý vì ∈k,h Z ) Bài 44: Giải phương trình ( )2 2 2 11tg x cot g x cot g 2x * 3 + + = Điều kiện cos x 0 sin x 0 sin 2x 0 sin 2x 0 ≠⎧⎪ ≠ ⇔ ≠⎨⎪ ≠⎩ Do đó : (*)⇔ 2 2 21 1 11 1 1cos x sin x sin 2x 3 ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + − + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ 11 ⇔ 2 2 2 21 1 1cos x sin x 4 sin x cos x 3+ + = 20 ⇔ 2 2 2 2 4 sin x 4 cos x 1 20 4 sin x cos x 3 + + = ⇔ 25 2sin 2x 3= 0 ⇔ 2 3sin 2x 4 = (nhận do sin2x 0≠ ) ⇔ ( )1 31 cos4x 2 4 − = ⇔ 1 2cos4x cos 2 3 π= − = ⇔ 24x k2 3 π= ± + π ⇔ ( )kx k 6 2 π π= ± + ∈ Z Chú ý : Có thể dễ dàng chứng minh : 2tgx cot gx sin 2x + = Vậy (*)⇔( )2 21 1tgx cot gx 2 1sin x 3 ⎛ ⎞+ − + − =⎜ ⎟⎝ ⎠ 1 ⇔ 25 2sin 2x 3= 0 Bài 45 : (Đề thi tuyển sinh Đại học khối D, năm 2003) Giải phương trình ( )2 2 2x xsin tg x cos 0 * 2 4 2 π⎛ ⎞− − =⎜ ⎟⎝ ⎠ Điều kiện : cos x 0 sin x 1≠ ⇔ ≠ ± lúc đó : (*) ⇔ [ ]221 sin x 11 cos x 1 cos x 02 2 cos x 2 ⎡ π ⎤⎛ ⎞− − − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦ = ⇔ ( ) ( ) ( )221 sin x 1 cos x 1 cos x 01 sin x − − − + =− ⇔ ( )21 cos x 1 cos x 0 1 sin x − − + =+ ⇔ ( ) 1 cos x1 cos x 1 0 1 sin x −⎡ ⎤+ −⎢ ⎥+⎣ ⎦ = = ⇔ ( ) ( )1 cos x cos x sin x 0+ − − ⇔ ( )cos x 1 nhậndocos x 0 tgx 1 = − ≠⎡⎢ = −⎣ ⇔ = π + π⎡⎢ π⎢ = − + π⎣ x k2 x k 4 Bài 46 : Giải phương trình ( ) ( )2sin 2x cot gx tg2x 4 cos x *+ = Điều kiện : ⇔ sin x 0 cos2x 0 ≠⎧⎨ ≠⎩ 2 sin x 0 2cos x 1 0 ≠⎧⎨ − ≠⎩ ⇔ cos x 1 2cos x 2 ≠ ±⎧⎪⎨ ≠ ±⎪⎩ Ta có : cos x sin2xcot gx tg2x sin x cos2x + = + cos2x cos x sin2xsin x sin x cos2x += cos x sin x cos2x = Lúc đó : (*) ⎛ ⎞⇔ =⎜ ⎟⎝ ⎠ 2cos x2sin x cos x 4 cos x sin x cos 2x ⇔ 2 22cos x 4 cos x cos2x = ( )Dosin x 0≠ ⇔ cos x 0 1 2 cos2x =⎡⎢⎢ =⎣ ⇔ ( ) ⎡ ⎛ ⎞= ≠ ≠ ±⎢ ⎜ ⎟⎜ ⎟⎢ ⎝ ⎠⎢ π⎢ = = ≠⎣ 2cos x 0 Nhận do cos x và 1 2 1cos 2x cos , nhận do sin x 0 2 3 ⇔ π⎡ = + π⎢⎢ π⎢ = ± + π⎢⎣ x k 2 x k 6 ( ) ∈k Z Bài 47 : Giải phương trình: ( )2 2cot g x tg x 16 1 cos4x cos2x − = + Ta có : 2 2 2 2 2 2 cos x sin xcot g x tg x sin x cos x − = − 4 4 2 2 2 cos x sin x 4cos2x sin x cos x sin 2x −= = Điều kiện : ⇔ sisin2x 0 cos2x 0 ≠⎧⎨ ≠⎩ n4x 0≠ Lúc đó (*) ( )24 16 1 cos4xsin 2x⇔ = + ( ) ( ) ( ) ( ) ( ) ( ) ⇔ = + ⇔ = + − ⇔ = − = ⇔ = ≠ ⇔ − = π π⇔ = ⇔ = + ∈ 2 2 2 2 1 4 1 cos 4x sin 2x 1 2 1 cos 4x 1 cos 4x 1 2 1 cos 4x 2sin 4x 1sin 4x nhận do sin 4x 0 2 1 11 cos 8x 2 2 kcos 8x 0 x , k 16 8 Bài 48: Giải phương trình: ( )4 4 7sin x cos x cot g x cot g x * 8 3 6 π π⎛ ⎞ ⎛ ⎞+ = + −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ Điều kiện sin x 0 sin x 0 3 3 2sin 2x 0 3 sin x 0 cos x 0 6 3 ⎧ ⎧π π⎛ ⎞ ⎛ ⎞+ ≠ + ≠⎜ ⎟ ⎜ ⎟⎪ ⎪ π⎪ ⎝ ⎠ ⎪ ⎝ ⎠ ⎛ ⎞⇔ ⇔ +⎨ ⎨ ⎜ ⎟π π ⎝ ⎠⎛ ⎞ ⎛ ⎞⎪ ⎪− ≠ + ≠⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎩ ≠ 1 3sin2x cos2x 0 2 2 tg2x 3 ⇔ − + ≠ ⇔ ≠ Ta có: ( )24 4 2 2 2 2 21sin x cos x sin x cos x 2sin x.cos x 1 sin 2x2+ = + − = − Và: cot g x .cot g x cot g x .tg x 1 3 6 3 3 π π π π⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ − = + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ = Lúc đó: (*) 21 71 sin 2x 2 8 ⇔ − = ( )1 11 cos4x 4 8 ⇔ − − = − ⇔ = π π⇔ = ± + π ⇔ = ± + 1cos 4x 2 k4x k2 x 3 1 π 2 2 (nhận do 3tg2x 3 3 = ± ≠ ) Bài 49: Giải phương trình ( )12tgx cot g2x 2sin2x * sin2x + = + Điều kiện: cos2x 0 sin2x 0 cos2x 1 sin2x 0 ≠⎧ ⇔ ≠ ⇔ ≠ ±⎨ ≠⎩ Lúc đó: (*) 2sin x cos2x 12sin2x cos x sin2x sin2x ⇔ + = + ( ) ( ) ( ) ( ) ( ) ( ) ⇔ + = + ⇔ + − = + ⇔ − = ⎡ ⎤⇔ − + =⎣ ⎦ ⎡ = ≠ ⇒⎢⇔ π⎢ ≠ = − = ≠ ±⎢⎣ π⇔ = ± + π ∈ π⇔ = ± + π ∈ 2 2 2 2 2 2 2 2 2 4 sin x cos 2x 2sin 2x 1 4 sin x 1 2sin x 8sin x cos x 1 2sin x 1 4 cos x 0 2sin x 1 2 1 cos 2x 0 sin x 0 loại do sin 2x 0 sin x 0 1 2cos 2x cos nhận do cos 2x 1 2 3 22x k2 k Z 3 x k , k 3 Bài 51: Giải phương trình: ( ) ( )3 sin x tgx 2 1 cos x 0 * tgx sin x + − + =− ( ) Điều kiện : ⇔ tgx sin x 0− ≠ sin x sin x 0 cos x − ≠ ⇔ ( )sin x 1 cos x 0 cos x − ≠ ⇔ sin x 0 cos x 0 sin2x 0 cos x 1 ≠⎧⎪ ≠ ⇔ ≠⎨⎪ ≠⎩ Lúc đó (*)⇔ ( )( ) ( ) 3 sin x tgx .cot gx 2 1 cos x 0 tgx sin x .cot gx + − + =− ⇔ ( )( ) ( ) 3 cos x 1 2 1 cos x 0 1 cos x + − + =− ⇔ ( )− = ≠ + ≠− 3 2 0 do sin x 0 nên cos x 1 0 1 cos x ⇔ 1 2cosx 0+ = ⇔ 1cos x 2 = − (nhận so với điều kiện) ⇔ π= ± + π ∈ 2x k2 , k 3 Bài 52 : Giải phương trình ( ) ( ) ( ) ( ) ( ) 2 2 2 21 cos x 1 cos x 1tg xsin x 1 sin x tg x * 4 1 sin x 2 − + + − = + +− Điều kiện : cos x 0 sin x 1 ≠⎧⎨ ≠⎩ ⇔ cos x 0≠ Lúc đó (*)⇔ ( )( ) ( ) 2 3 2 2 2 2 1 cos x sin x 1 sin x1 sin x 4 1 sin x 1 sin x 2 1 sin x + − = + +− − − ⇔ ( ) ( ) ( ) ( )2 3 21 cos x 1 sin x 2sin x 1 sin x 1 sin x 2sin x+ + − = + − + 2 ⇔ ( ) ( ) ( ) ( )2 2 21 sinx 1 cos x 1 sin x cos x 2sin x 1 sin x+ + = + + + ⇔ 2 2 1 sin x 0 1 cos x cos x 2sin x + =⎡⎢ + = +⎣ 2 ⇔ ⇔ cos2x = 0 = − ≠⎡⎢ = −⎣ sin x 1 ( loại do cos x 0 ) 1 1 cos 2x ⇔ 2x k 2 π= + π ⇔ x k 4 2 π= + π (nhận do cosx ≠ 0) Bài 53 : Giải phương trình ( )cos3x.tg5x sin7x *= Điều kiện cos5x 0≠ Lúc đó : (*) ⇔ sin5xcos3x. sin7x cos5x = sin5x.cos3x sin7x.cos5x= ⇔ [ ] [ ]1 1sin8x sin2x sin12x sin2x 2 2 + = + ⇔ sin8x sin12x= ⇔ 12x 8x k2 12x 8x k2= + π ∨ = π − + π⇔ π π= ∨ = +k kx x⇔ π 10 So lại với điều kiện 2 20 k 5kx thì cos5x cos cos 2 2 π π= = = k 2 π (loại nếu k lẻ) π π π π⎛ ⎞= + = + ≠⎜ ⎟⎝ ⎠20 10 k kx thì cos5x cos 0 nhận 4 2 π π= π ∨ = + kx h x 20 10 Do đó : (*)⇔ , với k, h ∈ Bài 54 : Giải phương trình ( )4 4sin x cos x 1 tgx cot g2x * sin2x 2 + = + ( ) Điều kiện : Ta có : sin2x 0≠ ( )24 4 2 2 2sin x cos x sin x cos x 2sin x cos x+ = + − 2 211 sin 2 2 = − x sin x cos2xtgx cot g2x cos x sin2x + = + sin2xsin x cosx cos2x cos xsin2x += ( )cos 2x x 1 cos xsin2x sin2x −= = ( ) − ⇔ = ⇔ − = ⇔ = ≠ ⇔ = π⇔ = + π ∈ π π⇔ = + ∈ 2 2 2 2 11 sin 2x 12Do đó : (*) sin 2x 2sin 2x 1 11 sin 2x 2 2 sin 2x 1 nhận do sin 2x 0 cos 2x 0 2x k , k 2 kx , k 4 2 Bài 55 : Giải phương trình ( )2tg x x2 2 2.cot g 2x.cot g3x tg x cot g 2 cot g3x *= − + cos x 0 sin2x 0 sin3x 0≠ ∧ ≠ ∧ ≠ Điều kiện : sin2x 0 sin3x 0⇔ ≠ ∧ ≠ ( )⇔ − = − ⎡ − + ⎤ − +⎛ ⎞ ⎛ ⎞⇔ − =⎜ ⎟ ⎜ ⎟⎢ ⎥+ − + −⎝ ⎠ ⎝ ⎠⎣ ⎦ 2 2 2 2Lúc đó (*) cotg3x tg x cot g 2x 1 tg x cot g 2x 1 cos 2x 1 cos 4x 1 cos 2x 1 cos 4xcot g3x 1 1 cos 2x 1 cos 4x 1 cos 2x 1 cos 4x − ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) [ ] ( ) ⎡ ⎤⇔ − + − + −⎣ ⎦ = − − − + + ⇔ − = − + ⇔ − = − ⇔ = ≠ ⇔ = ∨ = π⇔ = + π ∨ = cot g3x 1 cos2x 1 cos4x 1 cos2x 1 cos4x 1 cos2x 1 cos4x 1 cos4x 1 cos2x cot g3x 2cos4x 2cos2x 2 cos4x cos2x cos3x 4sin3xsin x 4cos3x cos x sin3x cos3xsin x cos3x cos x do sin3x 0 cos3x 0 sin x cos x 3x k tgx 1 2 ( )π π π⇔ = + ∨x x 6 3 = + π ∈k l k, l Z 4 điều kiện: sinSo với ≠2x.sin3x 0 * Khi π π= + kx 6 3 thì π π π⎛ ⎞ ⎛ ⎞+ + π ≠⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ 2ksin .sin k 0 3 3 2 +⎛ ⎞⇔ π ≠⎟⎠ 1 2ksin 0 Luôn đúng ⎜⎝ 3 ( )∀ + ≠k thỏa 2k 1 3m m Z ∈ * Khi π= + πx l thì π π⎛ ⎞ ⎛ ⎞+ π + π = ±⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ 3 2sin 2l sin 3l 0 2 4 2 4 ≠ luôn đúng Do đó: (*) π π⎡ = + ∈ ∧ ≠ − ∈⎢⇔ ⎢ π⎢ = + π ∈⎢⎣ kx , k Z 2k 3m 1( m 6 3 x l , l 4 ) Cách khác: ( )⇔ − = − −−⇔ = =− − + −⇔ = − + ⇔ = ⇔ = ∨ = 2 2 2 2 2 22 2 2 2 2 2 (*) cotg3x tg x cot g 2x 1 tg x cot g 2x tg 2x.tg x 1tg x cot g 2xcot g3x tg x cot g 2x 1 tg x tg 2x (1 tg2x.tgx ) (1 tg2x.tgx )cot g3x (tg2x tgx) ( tg2x tgx) cot g3x cot gx.cotg3x cos 3x 0 sin x cos x BÀI TẬP π⎛ ⎞π⎜ ⎟⎝ ⎠,331. Tìm các nghiệm trên của phương trình: π π⎛ ⎞ ⎛+ − = +⎜ ⎟ ⎜5 7sin 2x 3cos x 1 2sin x2 2 ⎞− ⎟⎝ ⎠ ⎝ ⎠ . Tìm các nghiệm x trên π⎛ ⎞⎜ ⎟2 ⎝ 2 ⎠0, của phương trình 4x cos 6x sin 10,5 10x 3. Giải các phương trình sau: x cos x 2 sin x s x+ = + sin ( )− = π +2 2 a/ sin co( )3 3 5 5 b/ sin x sin2x sin3x 3 cos x cos2x cos3x + + =+ + c/ 2 1 cos xtg x 1 sin x += − d/ tg2x tg3x tg5x tg2x.tg3x.tg5x− − = e/ 24cos x cos x 3 = f/ 1 12 2 sin x 4 sin x cos x π⎛ ⎞+ = +⎜ ⎟⎝ ⎠ 2 i/ 2tgx cot g2x 3 sin2x + = + h/ 23tg3x cot g2x 2tgx sin4x + = + k/ =2 2 2sin x sin 2x sin 3x 2+ + l/ si 2n x 2cos x 0 in x + 1 s =+ m/ ( )225 4x 3sin2 x 8sin x 0− π + π = n/ sin x.cot g5x 1 cos9x = o/ 23tg6x 2tg2x cot g4x sin8x − = − p/ ( )22sin 3x 1 4sin x 1− = q/ 2 1 cos xtg +x 1 sin x = − r/ 3c x 33 2os cos3x sin xsin x 4 + = s/ 4 4x x 5sin cos 3 3 8 ⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ t/ =3 3 2cos x 4sin x 3cos xsin x sin x 0− − + u/ 4 4x xsin cos 1 2sin x 2 2 + = − v/ s 3in x sin2x.sin x 4 4 π π⎛ ⎞ ⎛ ⎞− = +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ w/ ( )24 4 2 sin x sin3x tg x 1 cos x −+ = 2 x y/ tgx cos x cos+ − x sin x 1 tg tgx 2 ⎛ ⎞= + ⎠ . ⎜ ⎟⎝ 4 Cho phương trình: ( ) ( ) (2 )2s x m 3 4cos x 1+ + = − a/ Giải phương trình khi m = 1 2sin x 1 2cos2x in− [ ]0,π b/ Tìm m để (1) có đúng 2 nghiệm trên m 0 m 1 m 3= ∨ ) 5. Cho phương trình: ( )54 cos xs 5 2in x 4sin x.cos x sin 4x m 1− = + Biết rằng x = π là một nghiệm của (1). Hãy giải phương trình trong trường hợp đó. Th.S Phạm Hồng Danh TT luyện thi Đại học CLC Vĩnh Viễn
File đính kèm:
- Chuong2 - Phuong trinh luong giac co ban.pdf