Đề thi thử đại học, cao đẳng lần 2 Năm học 2013 -2014 môn Toán Lớp 12 Khối A, A1, B

Câu 1. Khảo sát hàm số và các bài toán liên quan (2 điểm)

Câu 2. Giải phương trình lượng giác(1 điểm)

Câu3. Tìm nguyên hàm (1 điểm)

Câu 4. Giải hệ phương trình vô tỷ (1 điểm)

Câu 5. Hình h ọc không gian: Tính thể tích và tính góc hoặc khoảng cách

pdf6 trang | Chia sẻ: hainam | Lượt xem: 1365 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Đề thi thử đại học, cao đẳng lần 2 Năm học 2013 -2014 môn Toán Lớp 12 Khối A, A1, B, để tải tài liệu về máy bạn click vào nút TẢI VỀ ở trên
................................. Số báo danh: ..................................... 
Họ và tên; Chữ kí của giám thị : ........................................................................................................ 
PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) 
Câu 1 (2,0 điểm). Cho hàm số  4 22 4 y x x 
1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho. 
2) Tìm các giá trị của tham số m để phương trình    2 24 2 1 0x x m có đúng 6 nghiệm phân biệt. 
Câu 2 (1,0 điểm). Giải phương trình     
 
2
2
tan tan 2 sin
2 4tan 1
x x x
x
. 
Câu 3 (1,0 điểm). Tìm họ nguyên hàm  4 1 x x dx 
Câu 4 (1,0 điểm). Giải hệ phương trình 
     

     
3 3 2
2 2 2
3 3 2 0
1 3 2 2 0
x y y x
x x y y
Câu 5 (1,0 điểm). Cho lăng trụ ABC.A’B’C’ có các mặt bên đều là hình vuông cạnh a. Gọi G là trọng tâm tam giác 
AB’C’. Tính thể tích tứ diện GABC và khoảng cách giữa hai đường thẳng AB’ và BC. 
Câu 6 (1,0 điểm). Cho a, b, c là ba số thực dương thỏa mãn 
  
 
 
2
4
2014
a b c abc . Chứng minh rằng 
  
  
2014a b c
a bc b ca c ab
PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được làm một trong hai phần (phần A hoặc B) 
A. Theo chương trình Chuẩn 
Câu 7 (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy, cho các điểm I(1; 1), M(-2; 2) và N(2; -2). Tìm tọa độ đỉnh 
A và B của hình vuông ABCD sao cho I là tâm hình vuông đó, hai điểm M và N thứ tự nằm trên cạnh AB và CD. 
Câu 8a (1,0 điểm). Giải bất phương trình           22log 1 log 2 log 1 x x x 
Câu 9a (1,0 điểm). Trong giờ Thể dục, tổ 1 lớp 12A có 12 học sinh gồm 7 học sinh nam và 5 học sinh nữ tập 
trung ngẫu nhiên theo một hàng dọc. Tính xác suất để người đứng đầu hàng và cuối hàng đều là học sinh nam. 
B. Theo chương trình Nâng cao 
Câu 7b (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy, cho điểm M(3; 4) và N(5; 3). Tìm điểm P trên đường elip 
(E): 2 24 = 8x y sao cho tam giác MNP có diện tích bằng 4,5. 
Câu 8b (1,0 điểm). Giải phương trình        
 
2 2
1log 4 15.2 27 2 log 0
4.2 3
x x
x
Câu 9b (1,0 điểm). Tính tổng    0 2 4 20142014 2014 2014 2014+ 3 5 ... 2015S C C C C . 
_______Hết_______ 
ĐỀ CHÍNH THỨC 
www.DeThiThuDaiHoc.com
www.MATHVN.com
 SỞ GD&ĐT BẮC GIANG 
TRƯỜNG THPT NGÔ SĨ LIÊN 
HƯỚNG DẪN CHẤM BÀI 
 THI THỬ ĐẠI HỌC, CAO ĐẲNG LẦN 2 
NĂM HỌC 2013 - 2014 
Môn: TOÁN LỚP 12 ; KHỐI: A, A1, B 
Chú ý : Dưới đây chỉ là sơ lược từng bước giải và cách cho điểm từng phần của mỗi bài. Bài làm của học 
sinh yêu cầu phải chi tiết, lập luận chặt chẽ. Nếu học sinh giải cách khác đúng thì chấm và cho điểm từng 
phần tương ứng. 
CÂU NỘI DUNG ĐIỂM 
* TXĐ: D   
* Sự biến thiên: 
- Các giới hạn 
 
 
    
 
4
2
2lim lim 2 1
x x
y x
x
0,25 
- Chiều biến thiên:     3' 8 8 ,y x x x . Do đó
 
     
 
2 0' 0 8 ( 1) 0
1
x
y x x
x
 Khoảng NB: (-∞-1) và (0; 1), khoảng ĐB: (-1; 0) và (1; +∞) 
 H/s đạt cực tiểu bằng -2 tại  1x , h/s đạt cực đại bằng 0 tại  0x 
- Lập đúng bảng biến thiên: 
0,25 
0,25 
Câu 1.1 
(1,0 điểm) 
* Đồ thị (Hinh1a) 
Hình 1b 
0,25 
Câu 1.2 
(1,0 điểm) - PT:    2 24 2 1 0x x m (1)   2 2 12 2
2
mx x (2) 
PT (2) là PT hoành độ giao điểm của 


1:
2
md y và đồ thị  2 2( ') : 2 2C y x x 
- Chỉ ra 
     
  
4 2
2 2
4 2
2 4 khi 2 
2 2
(2 4 )khi 2 
x x x
y x x
x x x
. 
- Vẽ đúng (C’): Hình 1b 
- Dựa vào đồ thị (C’) và đặc điểm đường thẳng d chỉ ra PT (1) có đúng 6 nghiệm phân biệt 

      
1
0 2 3 1
2
m
m 
KL: với  ( 3; 1)m thì PT (1) có đúng 6 nghiệm phân biệt. 
0,25 
0,25 
0,25 
0,25 
Câu 2 
(1,0 điểm) 
ĐK:     , 
2
x k k 
PT        12 2 2cos (tan tan ) (sin cos ) 2(sin sin cos ) sin cos
2
x x x x x x x x x x 
   







    
    
         

   


4sin 0
4sin cos 2 sin 1 0 2 , 
61sin 52 2
6
x k
x
x x x x k k
x
x k
Đối chiếu ĐK và KL nghiệm của PT…. 
0,25 
0,25 
0,5 
www.DeThiThuDaiHoc.com
www.MATHVN.com
Câu 3 
(1,0 điểm) 
- Đặt        
2
2 14 1 4 1 , 
4 2
t tdtt x t x x dx (1) 
- Xét   4 1 .I x x dx Từ (1)có:
          
  
 
 
2 2 5 3
4 21 1
4 2 8 40 24
t t dt t tI t t dt C . 
Vậy 
    
  
5 3
4 1 4 1
40 24
x x
I C 
0,25 
0,5 
0,25 
Câu 4 
(1,0 điểm) 
-Hệ 
     

     
3 3 2
2 2 2
3 3 2 0 (1)
1 3 2 2 0 (2)
x y y x
x x y y
có ĐKXĐ: 
      
      
2
2
1 0 1 1
0 22 0
x x
yy y
(*) 
- PT(1)      3 33 ( 1) 3( 1)x x y y (1’) 
Xét hàm số  3( ) 3f u u u . Khi đó: PT (1’) trở thành  ( ) ( 1)f x f y . 
Chỉ ra hàm số  3( ) 3f u u u nghịch biến trên [-1; 1] PT (1’) nghiệm đúng khi và chỉ khi 
    1 1x y y x (3) 
- Thế (3) vào (2) ta có PT: 
             
2
2 2 2 22 1 2 0 1 1 0 1 1 0x x x x x 
- Vói  0x thì  1y (T/m ĐK(*)) . KL : Hệ đã cho có nghiệm ( ; ) (0;1)x y 
0,25 
0,25 
0,25 
0,25 
K
H
M
G
M'
C'
B'
A C
B
A'
- CM được lăng trụ ABC.A’B’C’ là lăng trụ đứng có 
cạnh bên AA’= a, đáy là ∆ABC, ∆A’B’C’ đều cạnh a. 
Gọi M, M’ là trung điểm cạnh BC, B’C’ và H là hình 
chiếu vg góc của G trên 
(ABC) ' ( ),MM ABC  ' ,MM a 
2', = '
3
G AM AG AM và ,H AM //GH MM' 

2
3
GH a , GH là chiều cao hình chóp G. ABC 
- Tính đúng: 
2 3
4ABC
aS  nên 
31 3.
3 18GABC ABC
aV GH S  
0,25 
0,25 
Câu 5 
(1,0 điểm) 
- Chứng minh được BC // (AB’C’) d(AB’, BC) = d(BC, (AB’C’) ) = d(M, (AB’C’) ) (1) 
 Chứng minh được (AB’C’)  (AMM’), (AB’C’) (AMM’)= AM’ 
- Gọi K là h/chiếu vuông góc của M trên AM’MK (AB’C’) tại Kd(M, (AB’C’))= MK (2) 
 Tính đúng: MK = 21
7
a (3) . Từ (1) , (2) và (3)d(AB’, BC)= 21
7
a 
0,25 
0,25 
Câu 6 
(1,0 điểm) 
- Theo giả thiết , , 0a b c , áp dụng bất đẳng thức Côsi cho hai số , a bc ta có: 
   

4
4 4
1 1 12 . . .
2
aa bc a bc
a bc b c
≤
 
 
 
1 1 1
4 b c
 dấu “=” xảy ra khi và chỉ 
khi   0a bc và  4 4 0b c 


a
a bc
 
 
 
1 1 1
4 b c
, dấu “=” xảy ra khi    0a b c . 
- Tương tự:    
  
1 1 1
4
b
b ca c a
, dấu “=” xảy ra khi    0a b c , 
    
  
1 1 1
2
c
c ab a b
dấu “=” xảy ra khi   0c ab . 
Do đó:   
  
a b c
a bc b ca c ab
   
   
 
1 1 1 1
2
bc ca ab
a b c abc
, dấu“ = ” 
0,25 
0,25 
www.DeThiThuDaiHoc.com
www.MATHVN.com
xảy ra khi    0a b c (1) 
- Áp dụng BĐT Cosi có          
2 2 2
b c c a a bbc ca ab a b c , dấu “ = ” 
xảy ra khi    0a b c (2) 
Từ (1), (2) có    
    
a b c a b c
a a b c b ca c ab abc
, dấu “=” xảy ra khi    0a b c (3) 
- Theo giả thiết:     
 
2
4
2014
a b c abc , với , , 0a b c thì    4028a b c abc (4) 
Từ (3), (4)    
  
2014a b c
a bc b ca c ab
, dấu “=” xảy ra khi a = b = c =
23
4028
 
 
 
0,25 
0,25 
Câu 7a 
(1,0 điểm) 
N
H
I
C
A D
B
P
M
- Gọi P =NI ∩ AB P = ĐI(N) P = (0; 4) 
- PT đường thẳng AB là PT đt qua M, P: x-y + 4 = 0 
 Gọi H là hình chiếu vuông góc của I trên AB: 
IH = d(I, AB) = 2 2 
- Pt đt IH: x + y - 2 = 0 Tọa độ điểm H = (-1; 3) 
- Điểm I là tâm hình vuông ABCD  HA= HB =HI 
A, B nằm trên đường tròn (H, R = 2 2 ) Hoành 
độ, tung độ điểm A, B là nghiệm hệ: 
 2 2
4 0 1
51 ( 3) 8
x y x
yx y
   
 
    
hoặc 
3
1
x
y
 


ĐS: A(1; 5) , B(-3; 1) và A(-3; 1), B(1; 5) 
0,25 
0,25 
0,25 
0,25 
Câu 8a 
(1,0 điểm) 
- PT     2 2log( 1) log( 2) log( 1) x x x (1) có ĐKXĐ: x > 2 (*) 
- Với ĐK(*), BPT (1) 2 2log( 1) log( 1) +log( 2)x x x     
2 2 2 2log( 1) log( 1) ( 2) ( 1) ( 1) ( 2)x x x x x x          
    2
1 2
1 1 . 2 2 1 0
1 2
x
x x x x x
x
  
          
 
 (**) 
- Kết hợp (**) với ĐK (*) Tập nghiệm BPT (1) là [1+ 2; + ]S   
0,25 
0,25 
0,25 
0,25 
Câu 9a 
(1,0 điểm) 
- Số phần tử của KG mẫu  = 12! 
- Gọi A là biên cố: “Người đứng đầu hàng và cuối hàng của tổ 1lớp 12A đều là học sinh nam” thì 
2
7 .10!A A  
- Xác suất để người đứng đầu hàng và cuối hàng của tổ 1, lớp 12A trong giờ Thể dục đều là học 
sinh nam: 
2
7 .10! 7( )
12! 22
A A
P A

  

0,25 
0,5 
0,25 
Câu 7b 
(1,0 điểm) 
- Giả sử tọa độ điểm  ( ; )P a b . Từ giả thiết  2 2( ) : 4 = 8P E x y  2 2a 4 = 8b (1) 
 ĐK:  2 2, 2a b 
- Tính đúng 5MN  và chỉ ra 1 5( , ) ( , ) 4,5
2 2MNP
S d P MN d P MN    (*) 
- Viết đúng PT đường thẳng   : 2 11 0MN x y
 
 
2 11
( , )
5
a b
d P MN (**) 
Từ (*), (**)    2 11 9a b (2) 
- Giải hệ: 
1 32 24 = 8 (1) ... 1 32 11 9 (2)
2
a
a b
a b b
    
   
     
hoặc 
1 3
1 3
2
a
b
  

 


 ( Thỏa mãn ĐK) 
0,25 
0,25 
0,25 
0,25 
www.DeThiThuDaiHoc.com
www.MATHVN.com
KL: Có hai điểm thỏa mãn đề bài 1 3 1 31 3; , 1 3;
2 2
    
       
   
Câu 8b 
(1,0 điểm) 
- PT        
  
2 2
1log 4 15.2 27 2 log 0
4.2 3
x x
x
 (1) có ĐKXĐ: 
32
4
x 
- Đặt  
32 , 
4
xt t . Khi đó PT (1) trở thành:        22 2log 15 27 log 4 3 0t t t (2) 
- Giải PT (2) có được   3 2 3xt . Do vậy,  2log 3x 
0,25 
0,25 
0,5 
Câu 9b 
(1,0 điểm) 
 - Xét khai triển 
         

2014 0 1 2 2 3 3 4 4 5 2013 2014
2014 2014 2014 2014 2014 2014
2014 2015
2014
( ) 1 + ...
f x x x C x C x C x C x C x C x
C x
- Chỉ ra: 
      

0 1 2 2 3 3 4 4 2013 2013
2014 2014 2014 2014 2014 2014
2014 2014
2014
'( ) + 2 3 4 5 ... 2014
 2015
f x C C x C x C x C x C x
C x
            
 
'
2014 2014 2013
'( ) 1 1 2014 1f x x x x x x 
- Tính đúng: 
        
 
0 2 4 2014 2014
2014 2014 2014 2014
2013
'(1) '( 1) 2 + 3 5 ... 2015 1008.2
1008.2
f f C C C C
S
0,25 
0,25 
0,5 
www.DeThiThuDaiHoc.com
www.MATHVN.com

File đính kèm:

  • pdfMATHVN.com - 1. Toan-NSlien-de thi thu dh lan 2.pdf
Bài giảng liên quan