Giáo án Đại số & Giải tích 11 Tiết 7 - Trần Sĩ Tùng
Kiến thức:
- Nắm được điều kiện của a để các phương trình sinx = a và cosx = a có nghiệm.
- Biết cách viết công thức nghiệm của các phương trình lượng giác cơ bản trong trường hợp số đo được cho bằng radian và bằng độ.
- Biết cách sử dụng các kí hiệu arcsina, arccosa, arctana, arccota khi viết công thức nghiệm của phương trình lượng giác.
Kĩ năng:
- Giải thành thạo các PTLG cơ bản.
- Giải được PTLG dạng sinf(x) = sina, cosf(x) = cosa.
- Tìm được điều kiện của các phương trình dạng: tanf(x) = tana, cotf(x) = cota.
Ngày soạn: 20/08/2008 Chương I: HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC Tiết dạy: 07 Bàøi 2: PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN I. MỤC TIÊU: Kiến thức: Nắm được điều kiện của a để các phương trình sinx = a và cosx = a có nghiệm. Biết cách viết công thức nghiệm của các phương trình lượng giác cơ bản trong trường hợp số đo được cho bằng radian và bằng độ. Biết cách sử dụng các kí hiệu arcsina, arccosa, arctana, arccota khi viết công thức nghiệm của phương trình lượng giác. Kĩ năng: Giải thành thạo các PTLG cơ bản. Giải được PTLG dạng sinf(x) = sina, cosf(x) = cosa. Tìm được điều kiện của các phương trình dạng: tanf(x) = tana, cotf(x) = cota. Thái độ: Biết phân biệt rõ các khái niệm cơ bản và vận dụng từng trường hợp cụ thể. Tư duy các vấn đề của toán học một cách lôgic và hệ thống. II. CHUẨN BỊ: Giáo viên: Giáo án. Hình vẽ minh hoạ. Học sinh: SGK, vở ghi. Ôn tập công thức lượng giác. III. HOẠT ĐỘNG DẠY HỌC: 1. Ổn định tổ chức: Kiểm tra sĩ số lớp. 2. Kiểm tra bài cũ: (3') H. Tìm một vài giá trị x sao cho: sinx = ? Đ. x = ; … 3. Giảng bài mới: TL Hoạt động của Giáo viên Hoạt động của Học sinh Nội dung Hoạt động 1: Tìm hiểu khái niệm PTLG cơ bản 5' · Từ KTBC, GV giới thiệu khái niệm PTLG cơ bản. H. Cho ví dụ một vài PTLG cơ bản ? Đ. sinx = 1; cosx = ; tanx = 0; … · PTLG cơ bản có dạng: sinx = a, cosx = a, tanx = a, cotx = a · Giải PTLG là tìm tất cả các giá trị của ẩn số thoả mãn pt đã cho. Các giá trị này là số đo của các cung (góc) tính bằng radian hoặc bằng độ. Hoạt động 2: Tìm hiểu cách giải phương trình sinx = a 15' H1. Nêu tập giá trị của hàm số y = sinx ? H2. Nếu sinx = sina thì x = a và x = p – a là các nghiệm ? · GV giới thiệu kí hiệu arcsin · Cho các nhóm giải các pt sinx = 1; sinx = –1; sinx = 0 Đ1. Đoạn Đ2. Đúng. · Các nhóm thực hiện yêu cầu 1. Phương trình sinx = a · > 1: PT vô nghiệm · £ 1: PT có các nghiệm x = arcsina + k2p, k Ỵ Z; x = p – arcsina + k2p, k Ỵ Z Chú ý: a) sinf(x) = sing(x) Û Û b) sinx = sinb0 Û Û c) Các trường hợp đặc biệt: sinx = 1 Û x = + k2p sinx = –1 Û x = – + k2p sinx = 0 Û x = kp Hoạt động 3: Luyện tập giải phương trình sinx = a 18' · Cho mỗi nhóm giải 1 pt · Các nhóm thực hiện yêu cầu a) b) c) VD1: Giải các phương trình: a) sinx = b) sinx = – c) sinx = VD2: Giải các phương trình: a) sin2x = b) sin(x + 450) = c) sin3x = sinx Hoạt động 4: Củng cố 3' · Nhấn mạnh: – Điều kiện có nghiệm của pt – Công thức nghiệm của pt – Phân biệt độ và radian 4. BÀI TẬP VỀ NHÀ: Bài 1, 2 SGK. Đọc tiếp bài "Phương trình lượng giác cơ bản". IV. RÚT KINH NGHIỆM, BỔ SUNG:
File đính kèm:
- dai11cb07.doc