Tiết 45: Trường hợp đồng dạng thứ hai - Nguyễn Thành Chung

Phát biểu định lí về trường hợp đồng dạng thứ nhất của tam giác?

“Nếu ba cạnh của tam giác này tỉ lệ với ba cạnh của tam giác kia thì hai tam giác đó đồng dạng”

 

ppt9 trang | Chia sẻ: hainam | Lượt xem: 1202 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Tiết 45: Trường hợp đồng dạng thứ hai - Nguyễn Thành Chung, để tải tài liệu về máy bạn click vào nút TẢI VỀ ở trên
HÌNH HỌC 8TRƯỜNG HỢP ĐỒNG DẠNG THƯ HAIGiáo viên: Nguyễn Thành ChungKiểm tra bài cũPhát biểu định lí về trường hợp đồng dạng thứ nhất của tam giác?“Nếu ba cạnh của tam giác này tỉ lệ với ba cạnh của tam giác kia thì hai tam giác đó đồng dạng”Tiết 45: TRƯỜNG HỢP ĐỒNG DẠNG THỨ HAI1. Định lí.?1 Cho hai tam giác ABC và DEF như hình vẽ:600DEF600BCA4386Nêu hai cạnh của tam giác này tỉ lệ với hai cạnh của tam giác kia và hai góc tạo bởi các cặp cạnh đó bằng nhau, thì hai tam giác đồng dạng.Định lí:Kết luận:ABC ~ DEF- So sánh các tỉ số và Đo các đoạn thẳng BC, EF Tính và dự ®o¸n sù ®ång d¹ng cña ABC vµ DEF ?Tiết 45: TRƯỜNG HỢP ĐỒNG ĐẠNG THỨ HAI1. Định lí.Nêu hai cạnh của tam giác này tỉ lệ với hai cạnh của tam giác kia và hai góc tạo bởi các cặp cạnh đó bằng nhau, thì hai tam giác đồng dạng.Định lí:GT ABC, A’B’C’KLA’B’C’ ~ ABCTiết 45: TRƯỜNG HỢP ĐỒNG DẠNG THỨ HAIMNCBAC’B’A’Chứng minh:Trên AB của tam giác ABC đặt AM = A’B’. Qua M kẻ MN//BC (N AC)Ta có: AMN ~ ABC(I) do đó: Vì AM = A’B’ nên suy ra: Từ (1) và (2) suy ra: AN = A’C’.AMN và A’B’C’ có: AM = A’B’(cách dựng), (gt) và AN = A’C’Từ (I) và (II) suy ra A’B’C’ ~ ABC.(c/m trên). Suy ra AMN = A’B’C’(c.g.c) => AMN ~ A’B’C’(II)Tiết 45: TRƯỜNG HỢP ĐỒNG DẠNG THỨ HAI1. Định lí.Nêu hai cạnh của tam giác này tỉ lệ với hai cạnh của tam giác kia và hai góc tạo bởi các cặp cạnh đó bằng nhau, thì hai tam giác đồng dạng.Định lí:2. Áp dụng.Chứng minh: SGK/76.?2 Hãy chỉ ra các cặp tam giác đồng dạng với nhau từ các tam giác sau đây.A523463CBFDERPQ700700750Suy ra ABC ~ DEFTiết 45: TRƯỜNG HỢP ĐỒNG DẠNG THỨ HAI1. Định lí.Nêu hai cạnh của tam giác này tỉ lệ với hai cạnh của tam giác kia và hai góc tạo bởi các cặp cạnh đó bằng nhau, thì hai tam giác đồng dạng.Định lí:2. Áp dụng.Chứng minh: SGK/76.?3 a) Vẽ tam giác ABC có , AB = 5cm, AC = 7,5cm.b) Lấy trên các cạnh AB, AC lần lượt hai điểm D và E sao cho AD = 3cm, AE = 2cm. Hai tam giác AED và ABC có đồng dạng với nhau không? vì sao?ABCDE57,550032AED ~ ABC vì: Kết luận:(Chung)Tiết 45: TRƯỜNG HỢP ĐỒNG DẠNG THỨ HAIBài tập 36: SBT/72.ABCMNABC có AB = 12cm, AC = 15cmBC = 18cm. Trên AB đặt AM = 10cm, trên AC đặt AN = 8cm. Tính MN.Giải: Xét ABC và ANM có: Suy ra: (1)Góc xem giưa hai cạnh tương ứng là góc A chung. Vậy: ABC ~ ANM(c.g.c)Ta có: Tiết 45: TRƯỜNG HỢP ĐỒNG DẠNG THỨ HAI1. Định lí.Nêu hai cạnh của tam giác này tỉ lệ với hai cạnh của tam giác kia và hai góc tạo bởi các cặp cạnh đó bằng nhau, thì hai tam giác đồng dạng.Định lí:2. Áp dụng.Chứng minh: SGK/76.Về nhà Học bài theo SGK, nắm được hai trường hợp đồng dạng của tam giác. Làm các bài tập: 32, 33, 34 SGK/77.

File đính kèm:

  • pptTiet 45TH dong dang thu 2.ppt
Bài giảng liên quan