Tiểu luận Laser và các tính chất của laser, ứng dụng mới nhất của tia laser
Luồng khí thải nóng hổi thoát ra từ ống xả không hẳn là đồ thừa vô dụng. Người ta có thể lợi dụng nguyên lý cơ học lượng tử để chuyển chúng thành năng lượng có lợi dưới dạng bức xạ laser. Nhà vật lý Marlan Scully, Đại học Texas A&M (Mỹ), thông báo.
Scully nói rằng, để sử dụng khí thải từ ống xả của động cơ bốn kỳ, người ta cần một động cơ lượng tử phụ (quantum afterburner). Động cơ phụ này hoạt động theo nguyên lý cơ học lượng tử, tái sử dụng nhiệt lượng thừa của khí thải để chuyển thành năng lượng hữu ích dưới dạng bức xạ laser, nhằm nâng cao hiệu suất của toàn bộ hệ thống.
Động cơ lượng tử phụ của Scully gồm hai thiết bị: một để tạo ra laser và một tạo ra maser (tia maser là một loại tia laser với bước sóng siêu ngắn, ngắn hơn bước sóng ánh sáng thường). Bình thường, trong khí thải nóng, số lượng hạt tỷ lệ nghịch với mức năng lượng của chúng. Nghĩa là, hạt có mức năng lượng càng cao thì mật độ của chúng càng nhỏ. Tuy nhiên, khi đi vào thiết bị laser, các hạt trong khí thải bị kích thích, làm số lượng hạt ở cấp năng lượng cao tăng vọt.
sai số 1 giây trong cả cuộc đời của vũ trụ - khoảng 15 tỷ năm. Các nhà khoa học tại Viện Tiêu chuẩn và Công nghệ quốc gia ở Boulder, Colorado, đã phát triển một loại đồng hồ nguyên tử mới có thể “tíc tắc” một triệu tỷ lần trong mỗi giây, chính xác gấp 100-1.000 lần so với các đồng hồ vi sóng – xezi hiện nay. Chiếc đồng hồ này được gọi là đồng hồ nguyên tử quang học, vì nó áp dụng công nghệ laser, đo những khoảng thời gian ngắn nhất từng được ghi nhận tới nay. Nguyên lý làm việc tương tự như các loại đồng hồ nguyên tử ra đời từ thập kỷ 50, nhưng thay vì vi sóng, nó sử dụng ánh sáng quang học có tần số cao hơn, cung cấp thời gian chính xác hơn. Tương lai, loại đồng hồ này sẽ đóng vai trò quan trọng trong nhiều lĩnh vực cần độ chính xác cao như các thiết bị vệ tinh, Internet, phân phối điện, nhà băng 3.6 Máy laser lớn nhất thế giới Trong khoảng thời gian bằng 1/10 tỷ giây, máy siêu laser Jena sẽ phóng ra một nguồn năng lượng bằng tổng năng lượng của tất cả các nhà máy điện trên thế giới cộng lại. Đây sẽ là một bước tiến lớn nhất trong lịch sử ứng dụng laser. Máy được xây dựng theo mô hình hiện đại, gồm 4.500 điôt laser mắc song song với nhau. Trong đó mỗi điôt sẽ có công suất tương đương với 100.000 lần công suất của máy quét laser dùng trong ổ đĩa CD hiện nay. Khi ra mắt máy laser Jena sẽ có công suất 1.000 tỷ Watt! Khi nghiên cứu sản xuất máy laser Jena, Sauerbrey còn đạt được một “kỳ tích không gian” khác. Trong khi các máy phóng laser có công suất lớn hiện nay phải cần một diện tích tương đương với cả một sân vận động, thì máy siêu laser Jena của ông được đặt trong một phòng thí nghiệm vỏn vẹn có 200 m2! Máy siêu laser Jena sẽ đóng góp lớn cho việc sản xuất đồng vị phóng xạ dùng cho chẩn đoán y học và trị liệu bằng tia X. Mặt khác, với cường độ siêu mạnh, máy có thể giúp khử xạ chất thải nguy hiểm. Hiện nay, chất thải loại này được xử lý bằng cách bọc trong vỏ chì, sau đó chôn sâu xuống lòng đất hoặc thả xuống đáy biển. 3.7 Cầu nối laser giữa các vệ tinh Lần đầu tiên, hai vệ tinh ở khoảng cách trên 30.000 km đã trao đổi thông tin được với nhau thông qua một chùm laser. Kỹ thuật này cho phép các vệ tinh ở quỹ đạo thấp gửi thông tin nhanh chóng và ổn định xuống trạm xử lý dưới mặt đất thông qua một vệ tinh địa tĩnh ở quỹ đạo cao hơn. Trong thử nghiệm lần này, cầu nối laser (laser link, là một chùm laser có đường kính vài mét) đã có thể truyền các dữ liệu và hình ảnh với tốc độ 5 megabits trong một giây. Hiện các nhà khoa học đang phát triển một đường truyền mới có dung lượng lớn hơn nhiều, cho phép truyền cả âm thanh và hình ảnh. Các nhà khoa học đã sử dụng hệ thống laser có tên là SILEX (do Cơ quan Vũ trụ châu Âu ESA và Cơ quan Vũ trụ Pháp CNES triển khai) để nối vệ tinh Artemis với vệ tinh thiên văn SPOT 4. Chùm laser này được điều chỉnh tinh vi, cho phép SPOT 4 chuyển lượng dữ liệu lớn với tốc độ nhanh tới Artemis. Artemis bay ở quỹ đạo địa tĩnh, cách trái đất 31.000 km, trong khi SPOT 4 di chuyển với tốc độ 7.000 m/s ở độ cao 832 km. Bởi vậy, cầu nối laser phải được “thiết lập” rất chính xác. Theo ông Oppenhaeuser, đường truyền laser gọn hơn, chắc chắn hơn và cần ít năng lượng hơn hệ thống thu – phát sóng vô tuyến. Việc gửi thông tin từ các vệ tinh quan trắc như SPOT 4 về trái đất hiện kéo dài cả tiếng đồng hồ, bởi vì thông tin phải đi qua nhiều trạm: Trước hết, vệ tinh cần lưu giữ thông tin khi nó chuyển động trên quỹ đạo. Sau đó, nó gửi dữ liệu xuống một trạm trên mặt đất. Ở trạm này, thông tin lại được sắp xếp lại một lần nữa trước khi được gửi qua sóng radio tới trung tâm xử lý. Nay, sử dụng cầu nối laser, các nhà khoa học đã có thể rút ngắn thời gian truyền tin từ các vệ tinh ở quỹ đạo thấp xuống mặt đất. Đồng thời, đường truyền bằng laser cũng tỏ ra ổn định hơn rất nhiều. 3.8 Nam châm hoạt động bằng ánh sáng: Chiếc nam châm dẻo (plastic magnet) nhạy cảm với ánh sáng này có thể sẽ mở ra hướng ứng dụng mới cho việc lưu giữ và đọc thông tin: Bộ chứa quang trường (magneto – optic) dùng tia laser sẽ có những ưu điểm như dung dượng lớn, rẻ và nhanh Chiếc nam châm dẻo, chạy bằng ánh sáng (laser) là loại đầu tiên được làm từ các phân tử hữu cơ (carbon). Tác giả, ông Arthur Epstein, Đại học Quốc gia Ohio ở Columbus, và ông Joel Miller thuộc ĐH Utah ở Salt Lake (Mỹ), cho rằng, có thể sử dụng phương pháp hóa học để vi chỉnh những đặc tính của vật liệu. Việc đầu tiên là tăng nhiệt độ hoạt động của nó. Hiện nay, vật liệu này chỉ hoạt động ở nhiệt độ cực lạnh (-198 độ C). Vật liệu gồm các nguyên tử mangan, đan xen với các phân tử hữu cơ nhỏ xíu. Khi nó hấp thụ ánh sáng laser, các phân tử hữu cơ bị kích thích, tạo ra một từ trường. Qua đó, một hệ thống quang từ (magneto – optic) được xác lập, làm nền tảng cho ổ chứa từ tính. Bình thường, trong ổ chứa điện từ, chiều của từ trường phụ thuộc vào dòng điện, nhưng ở hệ thống quang từ, chiều từ trường phụ thuộc vào ánh sáng. Với ổ cứng tương lai, thông tin có thể được đọc, ghi hoặc xóa nhờ các tia laser, thông qua hiệu ứng quang từ. Tuy nhiên, Epstein thừa nhận rằng việc sử dụng hiệu ứng này hiện còn rất hạn chế. 3.9 Dùng laser di chuyển xung sáng trong khí lạnh Người ta có thể điều khiển đường đi của xung sáng cũng như tần số của nó bằng 3 chùm laser, giữa các nguyên tử khí lạnh. Kĩ thuật này được ứng dụng trong việc chế tạo các mạch quang điện và bộ nhớ của máy tính lượng tử. Người ta đã gắn 3 thiết bị phóng laser trong môi trường khí nitơ cực lạnh. Máy laser thứ nhất (còn gọi là máy phát tín hiệu) phóng ra một xung sáng vào môi trường khí nitơ. Sau đó, một thiết bị khác, gọi là thiết bị giữ laser, phóng ra một tia, hãm xung sáng lại trong khí lạnh. Tiếp theo, một thiết bị phóng laser thứ 3 đẩy xung sáng tới một vị trí cách vị trí ban đầu 6 milimét. Như vậy, xung sáng này đã được giữ và "vận chuyển" giữa môi trường của các nguyên tử khí lạnh. Các nhà khoa học cho biết, trong thí nghiệm này, họ đã thay đổi tần số của xung sáng bằng cách thay đổi tần số của thiết bị giữ laser. Đây là lần đầu tiên người ta có thể giữ một xung sáng, điều chỉnh tần số và di chuyển nó giữa các nguyên tử khí lạnh. Về nguyên tắc, các nhà khoa học có thể mã hóa thông tin trong xung sáng để lưu giữ và sử dụng. Vì thế, thí nghiệm lần này là một bước tiến mới trên đường tìm kiếm Đây là lần đầu tiên người ta có thể giữ một xung sáng, điều chỉnh tần số và di chuyển nó giữa các nguyên tử khí lạnh. Về nguyên tắc, các nhà khoa học có thể mã hóa thông tin trong xung sáng để lưu giữ và sử dụng. Vì thế, thí nghiệm lần này là một bước tiến mới trên đường tìm kiếm bộ nhớ lý tưởng cho máy tính lượng tử. 3.10 Động cơ lượng tử biến khí thải thành laser Luồng khí thải nóng hổi thoát ra từ ống xả không hẳn là đồ thừa vô dụng. Người ta có thể lợi dụng nguyên lý cơ học lượng tử để chuyển chúng thành năng lượng có lợi dưới dạng bức xạ laser. Nhà vật lý Marlan Scully, Đại học Texas A&M (Mỹ), thông báo. Scully nói rằng, để sử dụng khí thải từ ống xả của động cơ bốn kỳ, người ta cần một động cơ lượng tử phụ (quantum afterburner). Động cơ phụ này hoạt động theo nguyên lý cơ học lượng tử, tái sử dụng nhiệt lượng thừa của khí thải để chuyển thành năng lượng hữu ích dưới dạng bức xạ laser, nhằm nâng cao hiệu suất của toàn bộ hệ thống. Động cơ lượng tử phụ của Scully gồm hai thiết bị: một để tạo ra laser và một tạo ra maser (tia maser là một loại tia laser với bước sóng siêu ngắn, ngắn hơn bước sóng ánh sáng thường). Bình thường, trong khí thải nóng, số lượng hạt tỷ lệ nghịch với mức năng lượng của chúng. Nghĩa là, hạt có mức năng lượng càng cao thì mật độ của chúng càng nhỏ. Tuy nhiên, khi đi vào thiết bị laser, các hạt trong khí thải bị kích thích, làm số lượng hạt ở cấp năng lượng cao tăng vọt. Động cơ lượng tử sử dụng các hạt khí thải ở ba trạng thái khác nhau (3 cấp năng lượng). Thiết bị maser đẩy các hạt bị kích thích ở cấp năng lượng thứ hai lên cấp cao nhất. Quá trình này làm tăng mật độ các hạt năng lượng cao giữa bậc hai và bậc một. Chính các hạt này tạo ra bức xạ laser. Tóm lại, với việc gắn thêm một động cơ lượng tử phụ, nhiệt lượng của khí thải được chuyển thành bức xạ laser, góp phần nâng cao hiệu suất của toàn bộ hệ thống. Ngược lại, trong một động cơ bốn kỳ bình thường, nhiệt lượng của khí thải không dùng được nữa. Scully và cộng sự đang thử lắp đặt một động cơ lượng tử thực sự để kiểm nghiệm ý tưởng này. 3.11 Trạng thái thứ tư của vật chất: Vật chất, ngoài ba trạng thái thường gặp là thể rắn, lỏng, khí, còn tồn tại ở một dạng đặc biệt khác, được gọi là "trạng thái plasma", hay là thể khí ion hoá. Hãy lấy nước làm ví dụ: Đun nóng một cục băng đến mức độ nhất định, nó (ở thể rắn) sẽ biến thành nước (thể lỏng), nhiệt độ tăng lên nữa nước sẽ bốc hơi (thể khí). Nếu tiếp tục tăng nhiệt độ nước lên cao nữa, kết quả sẽ là gì? Khi nhiệt độ chất khí cao hơn vài ngàn độ, các electron mang điện âm bắt đầu bứt khỏi nguyên tử và chuyển động tự do, nguyên tử trở thành các ion mang điện dương. Nhiệt độ càng cao thì số electron bứt ra khỏi nguyên tử chất khí càng nhiều, hiện tượng này được gọi là sự ion hoá của chất khí. Các nhà khoa học gọi thể khí ion hóa là “trạng thái plasma”. Ngoài nhiệt độ cao, người ta có thể dùng các tia tử ngoại, tia X, tia bêta cực mạnh chiếu vào chất khí cũng làm cho nó biến thành plasma. Không phải là xa lạ Có thể bạn cảm thấy trạng thái plasma rất hiếm gặp. Nhưng thực ra đó là một trạng thái rất phổ biến trong vũ trụ. Trong lòng phần lớn những vì sao phát sáng đều có nhiệt độ và áp suất cực cao, vật chất ở đây đều ở trạng thái plasma. Chỉ có ở một số hành tinh tối và vật chất phân tán trong thiên hà mới có thể tìm thấy chất rắn, chất lỏng và chất khí. Ngay xung quanh chúng ta cũng thường gặp vật chất ở trạng thái plasma. Như ở trong ống đèn huỳnh quang, đèn neon hay trong hồ quang điện sáng chói. Hơn nữa, trong tầng ion xung quanh trái đất, trong hiện tượng cực quang, trong khí phóng điện sáng chói ở khí quyển và trong đuôi của các sao chổi đều có thể thấy trạng thái kỳ diệu này. 3.12 Làm tia laser đứng yên trong tinh thể
File đính kèm:
- TIEU_LUAN_Quan.doc