Bài 9: Giải bài tập về hệ phương trình tuyến tính - Mỵ Vinh Quang

Giải: Lập ma trận các hệ số mở rộng A và dùng các phép biến đổi sơ cấp trên dòng để đưa ma

trận A về dạng bậc thang. Nhận xét rằng hệ ban đầu tương đương với hệ có ma trận các hệ số

mở rộng là ma trận bậc thang sau cùng. Cụ thể ta có

pdf6 trang | Chia sẻ: hainam | Lượt xem: 1737 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Bài 9: Giải bài tập về hệ phương trình tuyến tính - Mỵ Vinh Quang, để tải tài liệu về máy bạn click vào nút TẢI VỀ ở trên
ĐẠI SỐ TUYẾN TÍNH
Tài liệu ôn thi cao học năm 2005
Phiên bản đã chỉnh sửa
PGS TS Mỵ Vinh Quang
Ngày 24 tháng 1 năm 2005
§9. Giải Bài Tập Về Hệ Phương Trình
Tuyến Tính
27) Giải hệ phương trình tuyến tính
2x1 + x2 + x3 + x4 = 1
x1 + 2x2 − x3 + 4x4 = 2
x1 + 7x2 − 4x3 + 11x4 = m
4x1 + 8x2 − 4x3 + 16x4 = m+ 1
Giải: Lập ma trận các hệ số mở rộng A và dùng các phép biến đổi sơ cấp trên dòng để đưa ma
trận A về dạng bậc thang. Nhận xét rằng hệ ban đầu tương đương với hệ có ma trận các hệ số
mở rộng là ma trận bậc thang sau cùng. Cụ thể ta có
A =

2 1 1 1 1
1 2 −1 4 2
1 7 −4 11 m
4 8 −4 16 m+ 1
 d1↔d2−−−−→

1 2 −1 4 2
2 1 1 1 1
1 7 −4 11 m
4 8 −4 16 m+ 1

d2→−2d1+d2−−−−−−−→
d3→−d1+d3
d4→−4d1+d4

1 2 −1 4 2
0 −3 3 −7 −3
0 5 −3 7 m− 2
0 0 0 0 m− 7
 d2→2d2+d3−−−−−−→d3↔d2
1 2 −1 4 2
0 −1 3 −7 m− 8
0 −3 3 −7 −3
0 0 0 0 m− 7
 d3→−3d2+d3−−−−−−−→

1 2 −1 4 2
0 −1 3 −7 m− 8
0 0 −6 14 −3m+ 21
0 0 0 0 m− 7

• Nếu m 6= 7 thì hệ vô nghiệm
• Nếu m = 7 hệ tương đương với
1∗ 2 −1 4 2
0 −1∗ 3 −7 m− 8
0 0 −6∗ 14 0
0 0 0 0 0

1
hệ có vô số nghiệm phụ thuộc một tham số là x4. Ta có
x3 =
7
3
x4, x2 = 3x3 − 7x4 + 1 = 1
x1 = 2− 2x2 + x3 − 4x4 = 7
3
x4 − 4x4 = −5
3
x4
Vậy, trong trường hợp này, nghiệm của hệ là
x1 = −5a
x2 = 1
x3 = 7a
x4 = 3a
(a ∈ R)
28) Giải hệ phương trình: 
2x1 − x2 + x3 − 2x4 + 3x5 = 3
x1 + x2 − x3 − x4 + x5 = 1
3x1 + x2 + x3 − 3x4 + 4x5 = 6
5x1 + 2x3 − 5x4 + 7x5 = 9−m
Giải: Lập ma trận các hệ số mở rộng
A =

2 −1 1 −2 3 3
1 1 −1 −1 1 1
3 1 1 −3 7 6
5 0 2 −5 4 9−m
 d1↔d2−−−−→

1 1 −1 −1 1 1
2 −1 1 −2 3 3
3 1 1 −3 7 6
5 0 2 −5 4 9−m

d2→−2d1+d2−−−−−−−→
d3→−3d1+d3
d4→−5d1+d4

1 1 −1 −1 1 1
0 −3 3 0 1 1
0 −2 4 0 1 2
0 −5 7 0 2 4−m
 d2→d2−d3−−−−−−→

1 1 −1 −1 1 1
0 −1 −1 0 0 −1
0 −2 4 0 1 2
0 −5 7 0 2 4−m

d3→−2d2+d3−−−−−−−→
d4=−5d2+d4

1 1 −1 −1 1 1
0 −1 −1 0 0 −1
0 0 6 0 1 0
0 0 12 0 2 9−m
 d4→−2d3+d4−−−−−−−→

1 1 −1 −1 1 1
0 −1 −1 0 0 −1
0 0 6 0 1 0
0 0 0 0 0 9−m

• Nếu m 6= 9 thì hệ vô nghiệm.
• Nếu m = 9 thì hệ có dạng 
1∗ 1 −1 −1 1 1
0 −1∗ −1 0 0 −1
0 0 6∗ 0 1 0
0 0 0 0 0 0

rankA = rankA = 3 nên hệ có vô số nghiệm phụ thuộc 2 tham số là x4, x5, ta có
x3 = −1
6
x5
x2 = −x3 + 1 = 1
6
x5 + 1
x1 = −x2 + x3 + x4 − x+ 5 + 1
= −1
6
x5 − 1− 1
6
x5 + x4 − x5 + 1 = −4
3
x5 + x4
2
Vậy, trong trường hợp này nghiệm của hệ là
x1 = a− 8b
x2 = b+ 1
x3 = −b
x4 = a
x5 = 6b
a, b ∈ R
29) Giải và biện luận hệ phương trình
mx1 + x2 + x3 = 1
x1 +mx2 + x3 = m
x1 + x2 +mx3 = m
2
Giải: Lập ma trận các hệ số mở rộng
A =
 m 1 1 11 m 1 m
1 1 m m2
 −→
 1 1 m m21 m 1 m
m 1 1 1

−→
 1 1 m m20 m− 1 1−m m−m2
0 1−m 1−m2 1−m3

−→
 1 1 m m20 m− 1 1−m m−m2
0 0 2−m−m2 1 +m−m2 −m3

Chú ý rằng 2−m−m2 = (2 +m)(1−m). Ta có
• m = 1, hệ trở thành
A =
 1 1 1 10 0 0 0
0 0 0 0

rankA = rankA = 1 nên hệ có vô số nghiệm phụ thuộc hai tham số x1, x2. Nghiệm là
x1 = 1− a− b
x2 = a
x3 = b
a, b ∈ R
• m = −2, hệ trở thành  1 1 −2 40 −3 3 −6
0 0 0 3
 hệ vô nghiệm
• m 6= 1,m 6= −2, hệ có nghiệm duy nhất
x3 =
1 +m−m2 −m3
(2 +m)(1−m) =
m2 + 2m+ 1
m+ 2
x2 = x3 −m = m
2 + 2m+ 1
m+ 2
−m = 1
m+ 2
x1 = m
2 − x2 −mx3 = m
3 + 2m2 − 1−m(m2 + 2m+ 1)
m+ 2
=
−m− 1
m+ 2
3
30) Giải và biện luận hệ phương trình
mx1 + x2 + x3 + x4 = 1
x1 +mx2 + x3 + x4 = 1
x1 + x2 +mx3 + x4 = 1
Giải: Lập ma trận các hệ số mở rộng
A =
 m 1 1 1 11 m 1 1 1
1 1 m 1 1
 d1↔d3−−−−→
 1 1 m 1 11 m 1 1 1
m 1 1 1 1

d2→−d1+d2−−−−−−−−→
d3→−md1+d3
 1 1 m 1 10 m− 1 1−m 0 0
0 1−m 1−m2 1−m 1−m

d3→d2+d3−−−−−−→
 1 1 m 1 10 m− 1 1−m 0 0
0 0 2−m−m2 1−m 1−m
 (∗)
Chú ý rằng 2−m−m2 = (1−m)(2 +m). Ta có các khả năng sau
• m = 1 hệ trở thành  1 1 1 1 10 0 0 0 0
0 0 0 0 0

rankA = rankA = 1, trường hợp này hệ có vô số nghiệm phụ thuộc ba tham số x2, x3, x4.
Nghiệm của hệ là 
x1 = 1− a− b− c
x2 = a
x3 = b
x4 = c
a, b, c ∈ R
• m = −2 hệ trở thành  1∗ 1 −2 1 10 3∗ −3 0 0
0 0 0 3∗ 3

Ta có rankA = rankA = 3 nên hệ có vô số nghiệm phụ thuộc một tham số là x3. Ta có
x4 = 1, 3x2 = 3x3 ⇒ x2 = x3
x1 = −x2 + 2x3 − x4 + 1 = x3
Trong trường hợp này nghiệm của hệ là
x1 = a
x2 = a
x3 = a
x4 = 1
a ∈ R
• m 6= 1,−2. Khi đó, từ (∗) ta thấy hệ có vô số nghiệm phụ thuộc tham số x4 và m. Ta có
(2−m−m2)x3 = (1−m)− (1−m)x4 ⇒ x3 = (1−m)− (1−m)x4
(2−m−m2) =
1− x4
m+ 2
(m− 1)x2 = (m− 1)x3 ⇒ x2 = x3
x1 = 1− x2 −mx3 − x4 = (m+ 2)− (1− x4)−m(1− x4)− (m+ 2)x4
m+ 2
=
1− x4
m+ 2
4
Vậy, trong trường hợp này hệ có nghiệm là
x1 =
1− a
m+ 2
x2 =
1− a
m+ 2
x3 =
1− a
m+ 2
x4 = a
31) Cho aij là các số nguyên, giải hệ
1
2
x1 = a11x1 + a12x2 + · · ·+ a1nxn
1
2
x2 = a21x1 + a22x2 + · · ·+ a2nxn
. . .
1
2
xn = an1x1 + an2x2 + · · ·+ annxn
Giải: Hệ phương trình đã cho tương đương với
(2a11 − 1)x1 + 2a12x2 + · · ·+ 2a1nxn = 0
2a21x1 + (2a22 − 1)x2 + · · ·+ 2a2nxn = 0
. . .
2an1x1 + 2an2x2 + · · ·+ (2ann − 1)xn = 0
Gọi ma trận các hệ số của hệ phương trình trên là An, ta có
detAn =
∣∣∣∣∣∣∣∣
2a11 − 1 2a12 . . . 2a1n
2a21 2a22 − 1 . . . 2a2n
. . . . . . . . . . . .
2an1 2an2 . . . 2ann − 1
∣∣∣∣∣∣∣∣
Chú ý rằng aij là các số nguyên nên các phần bù đại số của (An)ij cũng là các số nguyên, do
đó nếu khai triển định thức theo dòng cuối ta sẽ có
detAn = 2k + (2ann − 1)
∣∣∣∣∣∣∣∣
2a11 − 1 2a12 . . . 2a1,n−1
2a21 2a22 − 1 . . . 2a2,n−1
. . . . . . . . . . . .
2an−1,1 2an−1,2 . . . 2an−1,n−1 − 1
∣∣∣∣∣∣∣∣
= 2k + (2ann − 1) detAn−1
= 2k + 2ann detAn−1 − detAn−1
= 2l − detAn−1
Do đó, detAn + detAn−1 = 2l là số chẳn, Suy ra detAn và detAn−1 có cùng tính chẳn lẽ
với mọi n, mà detA1 = 2a11 − 1 là số lẽ nên detAn là số lẽ và do đó detAn 6= 0 (vì 0 là số
chẳn). Vì hệ phương trình có detAn 6= 0 nên hệ trên là hệ Cramer và có nghiệm duy nhất là
x1 = x2 = · · · = xn = 0.
5
32) Giải hệ phương trình 
x1 + x2 + · · ·+ xn = 1
x1 + 2x2 + · · ·+ 2n−1xn = 1
x1 + 3x2 + · · ·+ 3n−1xn = 1
. . .
x1 + nx2 + · · ·+ nn−1xn = 1
Giải: Giả sử x1, x2, . . . , xn là nghiệm của hệ phương trình đã cho. Xét đa thức
f(X) = xnX
n−1 + xn−1Xn−2 + · · ·+ x2X + x1 − 1 = 0
Vì x1, x2, . . . , xn là nghiệm của hệ nên X = 1, 2, . . . , n là các nghiệm của đa thức trên. Vì f(X)
có bậc 6 n − 1 mà lại có n nghiệm phân biệt nên f(X) ≡ 0 (f(X) là đa thức không), do đó
ta có xn = xn−1 = · · · = x2 = 0, x1 = 1. Vậy hệ phương trình đã cho có nghiệm duy nhất
x1 = 1, x2 = x3 = · · · = xn = 0.
33) Chứng minh hệ phương trình
a11x1 + a12x2 + · · ·+ a1nxn = 0
a21x1 + a22x2 + · · ·+ a2nxn = 0
· · ·
an1x1 + an2x2 + · · ·+ annxn = 0
trong đó aij = −aji và n lẽ, có nghiệm không tầm thường.
Giải: Gọi A là ma trận các hệ số, theo giả thiết (A)ij = −(A)ji do đó A = At. Do tính chất
định thức detA = detAt nên ta có
detA = det(−At) = (−1)n detAt = (−1)n detA = − detA( do n lẽ)
Bởi vậy suy ra detA = − detA hay detA = 0, tức là rankA = r < n. Theo Định lý Cronecker-
Capelly hệ có vô số nghiệm (phụ thuộc n− r tham số) do đó hệ có nghiệm khác (0, 0, . . . , 0).
6

File đính kèm:

  • pdfMr Quang (9).pdf
Bài giảng liên quan