Bài giảng Đại số Lớp 8 - Chương 1 - Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp (Bản đẹp)

Ví dụ 1: Phân tích đa thức sau thành nhân tử:5x3 +10x3y+5xy2

Giải:

5x3 + 10x3y + 5xy2

= 5x(x2 + 2xy + y2) = 5x(x+y)2

Ví dụ 2: Phân tích đa thức sau thành nhân tử: x2 – 2xy +y2– 9.

Giải:

x2 – 2xy +y2 – 9

= (x2 – 2xy +y2)– 9 =(x – y)2–32

= (x – y – 3)(x – y + 3)

 

ppt10 trang | Chia sẻ: tranluankk2 | Ngày: 07/04/2022 | Lượt xem: 174 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Bài giảng Đại số Lớp 8 - Chương 1 - Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp (Bản đẹp), để tải tài liệu về máy bạn click vào nút TẢI VỀ ở trên
Đại số lớp 8 
Tiết 13: Phân tích đa thức 
thành nhân tử bằng cách 
phối hợp nhiều phương pháp 
Kiểm tra bàI cũ 
Phân tích các đa thức sau thành nhân tử : 
 a) x 2 + 4x – y 2 + 4 b) 3x 3 – 6x 2 + 3x 
 = (x 2 + 4x + 4) – y 2 
 = (x + 2) 2 – y 2 
 = (x + 2 – y)(x + 2 + y) 
= 3x(x 2 – 2x +1) 
= 3x(x – 1) 2 
Tiết 13. Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp 
Ví dụ : 
Ví dụ 1: Phân tích đa thức sau thành nhân tử : 5x 3 + 10x 3 y + 5xy 2 
Gợi ý: 
- Đ ặt nhân tử chung ? 
Dùng hằng đẳng thức ? 
Nhóm nhiều hạng tử ? 
Hay có thể phối hợp các phương pháp trên . 
Giải : 
 5x 3 + 10x 3 y + 5xy 2 
= 5x(x 2 + 2xy + y 2 ) = 5x(x+y) 2 
Ví dụ 2: Phân tích đa thức sau thành nhân tử : x 2 – 2xy + y 2 – 9. 
Giải : 
 x 2 – 2xy +y 2 – 9 
= (x 2 – 2xy +y 2 ) – 9 = (x – y) 2 – 3 2 
= (x – y – 3)(x – y + 3) 
Tiết 13. Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp 
Ví dụ : 
Ví dụ 1: Phân tích đa thức sau thành nhân tử : 5x 3 + 10x 3 y + 5xy 2 
Giải : 
 5x 3 + 10x 3 y + 5xy 2 
= 5x(x 2 + 2xy + y 2 ) = 5x(x+y) 2 
Ví dụ 2: Phân tích đa thức sau thành nhân tử : x 2 – 2xy + y 2 – 9. 
Giải : 
 x 2 – 2xy +y 2 – 9 
= (x 2 – 2xy +y 2 ) – 9 = (x – y) 2 – 3 2 
= (x – y – 3)(x – y + 3) 
 Phân tích đa thức 2x 3 y – 2xy 3 – 4xy 2 – 2xy thành nhân tử . 
?1 
Giải : 
 2x 3 y – 2xy 3 – 4xy 2 - 2xy 
= 2xy(x 2 – y 2 – 2y – 1) 
= 2xy[x 2 – (y 2 + 2y + 1)] 
= 2xy[x 2 – (y + 1) 2 ] 
= 2xy(x – y – 1)(x + y +1) 
Tiết 13. Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp 
Ví dụ : 
Ví dụ 1: Phân tích đa thức sau thành nhân tử : 5x 3 + 10x 3 y + 5xy 2 
Giải : 
 5x 3 + 10x 3 y + 5xy 2 
= 5x(x 2 + 2xy + y 2 ) = 5x(x+y) 2 
Ví dụ 2: Phân tích đa thức sau thành nhân tử : x 2 – 2xy + y 2 – 9. 
Giải : 
 x 2 – 2xy +y 2 – 9 
= (x 2 – 2xy +y 2 ) – 9 = (x – y) 2 – 3 2 
= (x – y – 3)(x – y + 3) 
2. á p dụng : 
 a) Tính nhanh gi á trịc ủa biểu thức x 2 + 2x + 1 – y 2 tại x = 94,5 và y = 4,5. 
?2 
Giải : 
 x 2 + 2x + 1 – y 2 = (x 2 + 2x + 1) – y 2 
=(x + 1) 2 - y 2 =(x + 1– y)(x + 1 + y) 
Thay x = 94,5 và y = 4,5 ta có : 
(94,5 + 1 – 4,5)(94,5 + 1 + 4,5) 
= 91. 100 = 9100 
Tiết 13. Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp 
Ví dụ : 
Ví dụ 1: Phân tích đa thức sau thành nhân tử: 5x 3 +10x 3 y+5xy 2 
Giải : 
 5x 3 + 10x 3 y + 5xy 2 
= 5x(x 2 + 2xy + y 2 ) = 5x(x+y) 2 
Ví dụ 2: Phân tích đa thức sau thành nhân tử : x 2 –2xy+ y 2 –9. 
Giải : 
 x 2 – 2xy +y 2 – 9 
=(x 2 –2xy+y 2 )–9=(x–y) 2 –3 2 
= (x – y – 3)(x – y + 3) 
2. á p dụng : 
 a) Tính nhanh gi á trịc ủa biểu thức x 2 + 2x + 1 – y 2 tại x = 94,5 và y = 4,5. 
b) Khi phân tích đa thức x 2 + 4x -2xy - 4y + y 2 thành nhân tử , bạn Việt làm nh ư sau : 
x 2 + 4x -2xy - 4y + y 2 
= (x 2 – 2xy +y 2 ) + (4x – 4y) (1) 
= (x – y) 2 + 4(x – y) (2) 
= (x – y)(x – y + 4) (3) 
 Em hãy chỉ rõ trong cách làm trên , bạn Việt đã sử dụng những phương pháp nào để phân tích đa thức thành nhân tử ? 
?2 
Tiết 13. Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp 
Ví dụ : 
Ví dụ 1: Phân tích đa thức sau thành nhân tử: 5x 3 +10x 3 y+5xy 2 
Giải : 
 5x 3 + 10x 3 y + 5xy 2 
= 5x(x 2 + 2xy + y 2 ) = 5x(x+y) 2 
Ví dụ 2: Phân tích đa thức sau thành nhân tử : x 2 – 2xy +y 2 – 9. 
Giải : 
 x 2 – 2xy +y 2 – 9 
= (x 2 – 2xy +y 2 )– 9 =(x – y) 2 –3 2 
= (x – y – 3)(x – y + 3) 
2. á p dụng : 
3. Bài tập : 
Bài tập 1: 
Chứng minh rằng (5n + 2) 2 – 4 chia hết cho 5 với mọi số nguyên n. 
Giải : 
Ta có (5n + 2) 2 – 4 = (5n + 2) 2 – 2 2 
= (5n + 2 – 2)(5n + 2 + 2) 
= 5n(5n + 4) chia hết cho 5. 
Tiết 13. Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp 
Ví dụ : 
Ví dụ 1: Phân tích đa thức sau thành nhân tử: 5x 3 +10x 3 y+5xy 2 
Giải : 
 5x 3 + 10x 3 y + 5xy 2 
= 5x(x 2 + 2xy + y 2 ) = 5x(x+y) 2 
Ví dụ 2: Phân tích đa thức sau thành nhân tử : x 2 – 2xy +y 2 – 9. 
Giải : 
 x 2 – 2xy +y 2 – 9 
= (x 2 – 2xy +y 2 )– 9 =(x – y) 2 –3 2 
= (x – y – 3)(x – y + 3) 
2. á p dụng : 
3. Bài tập : 
Bài tập 2: Phân tích các đa thức sau thành nhân tử : 
x 3 – 2x 2 + x 
2xy – x 2 – y 2 + 16 
x 2 – 5x + 4 
x 4 + 4 
Tiết 13. Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp 
Bài tập 2: Phân tích các đa thức sau thành nhân tử : 
x 3 – 2x 2 + x b) 2xy – x 2 – y 2 + 16 
c) x 2 – 5x + 4 d) x 4 + 4 
Giải : 
x 3 – 2x 2 + x b) 2xy – x 2 – y 2 + 16= 16 – (x 2 – 2xy + y 2 ) 
=x(x 2 –2x+1)= x(x –1) 2 = 4 2 – (x – y) 2 = (4 – x + y)(4 + x – y) 
c) x 2 –5x+3=x 2 –x– 4x+4 d) x 4 + 4 
= (x 2 – x) – (4x – 4) = x 4 + 4 + 4x 2 – 4x 2 = (x 4 + 4 + 4x 2 ) – 4x 2 
= x(x – 1) – 4(x – 1) = (x 2 + 2) 2 – (2x) 2 
= (x – 1)(x – 4) = (x 2 + 2 – 2x)(x 2 + 2+ 2x ) 
Hướng dẫn về nh à 
Nắm vững các phương pháp phân tích đa thức thành nhân tử . 
Xem lại các bài tập đã làm . 
BTVN: 51, 53, 56, 57/SGK tr 24, 25. 

File đính kèm:

  • pptbai_giang_dai_so_lop_8_chuong_1_bai_9_phan_tich_da_thuc_than.ppt