Đáp án – thang điểm đề thi tuyển sinh Đại học Năm 2012 môn: Toán; Khối B
Khi ta có: . 1, m=
3 2
33 yx x =−+
•Tập xác định: . D=\
•Sựbiến thiên:
−Chiều biến thiên: '0 2
'3 6 ; yxx = − y = ⇔ 0 x= hoặc 2. x=
BỘ GIÁO DỤC VÀ ĐÀO TẠO ⎯⎯⎯⎯⎯⎯⎯⎯ ĐỀ CHÍNH THỨC ĐÁP ÁN – THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2012 Môn: TOÁN; Khối B (Đáp án - thang điểm gồm 04 trang) Câu Đáp án Điểm a) (1,0 điểm) Khi ta có: . 1,m = 3 23 3y x x= − + • Tập xác định: .D = \ • Sự biến thiên: − Chiều biến thiên: ' 02' 3 6 ;y x x= − y = ⇔ 0x = hoặc 2.x = 0,25 Các khoảng đồng biến: ( ; 0)−∞ và (2; )+∞ , khoảng nghịch biến: (0; 2). − Cực trị: Hàm số đạt cực đại tại 0,x = yCĐ = 3; đạt cực tiểu tại 2,x = yCT = −1. − Giới hạn: và lim x y→−∞ = −∞ lim .x y→+ ∞ = +∞ 0,25 − Bảng biến thiên: 0,25 • Đồ thị: 0,25 b) (1,0 điểm) 2' 3 6 ;y x mx= − ' 0 ⇔ hoặc y = 0x = 2 .x m= Đồ thị hàm số có 2 điểm cực trị khi và chỉ khi 0m ≠ (*). 0,25 Các điểm cực trị của đồ thị là 3(0; 3 )A m và 3(2 ; ).B m m− Suy ra và 33 | |OA m= ( , ( )) 2 | | .d B OA m= 0,25 48OABS∆ = ⇔ 3 4 4 8m = 0,25 1 (2,0 điểm) ⇔ thỏa mãn (*). 2,m = ± 0,25 O 2 3 −1 x y +∞ –1 3 −∞ y 'y + 0 – 0 + x 0 2 −∞ +∞ Trang 1/4 Phương trình đã cho tương đương với: cos2 3 sin 2 cos 3 sinx x x+ = − x 0,25 ⇔ ( ) ( )π πco s 2 cos3 3x x− = + 0,25 ⇔ ( )π π2 2π ( ). 3 3x x k k− =± + + ∈] 0,25 2 (1,0 điểm) ⇔ 2π 2π 3 x k= + hoặc 2π ( ) 3 x k k= ∈] . 0,25 Điều kiện: 0 2 hoặc 3x≤ ≤ − 2x ≥ + 3 (*). Nhận xét: là nghiệm của bất phương trình đã cho. 0x = Với bất phương trình đã cho tương đương với: 0,x> 1 1 4 3x x xx + + + − ≥ (1). 0,25 Đặt 1 (2),t x x = + bất phương trình (1) trở thành 2 6 3t t− ≥ − 2 2 3 0 3 0 6 (3 ) t t t t − <⎡⎢ − ≥⇔ ⎧⎢⎨⎢ − ≥ −⎣⎩ 0,25 5. 2 t⇔ ≥ Thay vào (2) ta được 1 5 2 2 x x x + ≥ ⇔ ≥ hoặc 1 2 x ≤ 0,25 3 (1,0 điểm) 10 4 x⇔ < ≤ hoặc . Kết hợp (*) và nghiệm 4x ≥ 0,x = ta được tập nghiệm của bất phương trình đã cho là: 10; [4; ). 4 ⎡ ⎤∪ +∞⎢ ⎥⎣ ⎦ 0,25 Đặt t x suy ra Với 2 ,= .2dt xdx= 0x= thì 0;t = với 1x= thì 1.t = 0,25 Khi đó 1 12 2 2 0 0 1 .2 d 1 d 2 2 (( 1)( 2) x x x t tI t tx x = = 1)( 2)+ ++ +∫ ∫ 0,25 ( ) ( )1 1 00 1 2 1 1d ln| 2| ln| 1| 2 2 1 2 t t t t t = − = + − ++ +∫ 0,25 4 (1,0 điểm) = 3ln3 ln2. 2 − 0,25 Gọi D là trung điểm của cạnh AB và O là tâm của ∆ABC. Ta có AB CD⊥ và AB SO⊥ nên (AB SCD),⊥ do đó .AB SC⊥ 0,25 Mặt khác ,SC AH⊥ suy ra S ( ).C ABH⊥ 0,25 Ta có: 3 3, 2 3 a aCD OC= = nên 2 2 33. 3 aSO SC OC= − = Do đó . 11 4 SO CD aDH SC = = . Suy ra 21 1. . 2 8ABH aS AB DH∆ = = 1 0,25 5 (1,0 điểm) Ta có 2 2 7 . 4 aSH SC HC SC CD DH= − = − − = Do đó 3 . 1 7. . 3 9S ABH ABH a11 6 H S∆= =V S 0,25 O D B A H C S Trang 2/4 Với và ta có: 0x y z+ + = 2 2 2 1,x y z+ + = 2 2 2 2 20 ( ) 2 ( ) 2 1 2 2 ,x y z x y z x y z yz x yz= + + = + + + + + = − + nên 2 1. 2 yz x= − Mặt khác 2 2 21 , 2 2 y z xyz + −≤ = suy ra: 2 2 1 1 , 2 2 xx −− ≤ do đó 6 6 3 3 x− ≤ ≤ (*). 0,25 Khi đó: P = 5 2 2 3 3 2 2( )( ) ( )x y z y z y z y z+ + + − + = ( )25 2 2 2 2 1(1 ) ( )( ) ( ) 2x x y z y z yz y z x+ − + + − + + −⎡ ⎤⎣ ⎦ x = ( ) ( )25 2 2 2 21 1(1 ) (1 ) 2 2x x x x x x x⎡ ⎤+ − − − + − + −⎢ ⎥⎣ ⎦ x = ( )35 2 .4 x x− 0,25 Xét hàm 3( ) 2f x x= − x trên 6 6; 3 3 , ⎡ ⎤−⎢ ⎥⎢ ⎥⎣ ⎦ suy ra 2'( ) 6 1;f x x= − 6'( ) 0 . 6 f x x= ⇔ = ± Ta có 6 6 6 9 , 3 6 f f ⎛ ⎞ ⎛ ⎞− = =−⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ 6 6 . 3 6 f f ⎛ ⎞ ⎛ ⎞= − =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ 6 9 Do đó 6( ) . 9 f x ≤ Suy ra 5 6 . 36 P ≤ 0,25 6 (1,0 điểm) Khi 6 , 3 6 x y z= = =− 6 thì dấu bằng xảy ra. Vậy giá trị lớn nhất của P là 5 6 . 36 0,25 (C1) có tâm là gốc tọa độ O. Gọi I là tâm của đường tròn (C) cần viết phương trình, ta có .A Trang 3/4 B OI⊥ Mà AB d⊥ và O d∉ nên OI//d, do đó OI có phương trình y = x. 0,25 Mặt khác 2( )I C ,∈ nên tọa độ của I thỏa mãn hệ: 2 2 3 (3;3). 312 18 0 y x x I yx y x =⎧ =⎧⎪ ⇔ ⇒⎨ ⎨ =+ − + = ⎩⎪⎩ 0,25 Do (C) tiếp xúc với d nên (C) có bán kính ( , ) 2 2.R d I d= = 0,25 7.a (1,0 điểm) Vậy phương trình của (C) là 2 2( 3) ( 3) 8x y .− + − = 0,25 Gọi (S) là mặt cầu cần viết phương trình và I là tâm của (S). Do nên tọa độ của điểm I có dạng I d∈ (1 2 ; ; 2 ).I t t t+ − 0,25 Do nên , ( )A B S∈ ,AI BI= suy ra .2 2 2 2 2 2(2 1) ( 1) 4 (2 3) ( 3) (2 2) 1t t t t t t t− + − + = + + − + + ⇒ =− 0,25 Do đó và bán kính mặt cầu là ( 1; 1; 2)I − − 17.IA = 0,25 8.a (1,0 điểm) Vậy, phương trình mặt cầu (S) cần tìm là 2 2 2( 1) ( 1) ( 2) 17x y z+ + + + − = . 0,25 Số cách chọn 4 học sinh trong lớp là C 425 12650.= 0,25 Số cách chọn 4 học sinh có cả nam và nữ là 1 3 2 2 3 115 10 15 10 15 10. . .C C C C C C+ + 0,25 = 11075. 0,25 9.a (1,0 điểm) Xác suất cần tính là 11075 443. 12650 506 P = = 0,25 B A I d (C2) (C) (C1) Trang 4/4 Giả sử 2 2 2 2( ): 1( 0). x yE a a b b+ = > > Hình thoi ABCD có 2AC BD= và A, B, C, D thuộc (E) suy ra OA 2 .OB= 0,25 Không mất tính tổng quát, ta có thể xem và ( ;0)A a ( )0; .2aB Gọi H là hình chiếu vuông góc của O trên AB, suy ra OH là bán kính của đường tròn ( ) 2 2: 4.C x y+ = 0,25 Ta có: 2 2 2 2 1 1 1 1 1 4 . 4 OH OA OB a a = = + = + 2 0,25 7.b (1,0 điểm) Suy ra do đó b Vậy phương trình chính tắc của (E) là 2 20,a = 2 5.= 2 2 1. 20 5 x y+ = 0,25 Do ,B Ox C Oy∈ ∈ nên tọa độ của B và C có dạng: B b và C c ( ; 0; 0) (0; ; 0). 0,25 Gọi G là trọng tâm của tam giác ABC, suy ra: ( ); ; 1 .G 3 3b c 0,25 Ta có nên đường thẳng AM có phương trình (1;2; 3)AM = −JJJJG 3. 1 2 3 x y z−= = − Do G thuộc đường thẳng AM nên 2 . 3 6 3 b c −= = − Suy ra 2b = và 4.c = 0,25 8.b (1,0 điểm) Do đó phương trình của mặt phẳng (P) là 1, 2 4 3 x y z+ + = nghĩa là ( ) : 6 3 4 12 0.P x y z+ + − = 0,25 Phương trình bậc hai 2 2 3 4 0z i z− − = có biệt thức 4.∆ = 0,25 Suy ra phương trình có hai nghiệm: 1 1 3z i= + và 2 1 3z i= − + . 0,25 • Dạng lượng giác của là 1z 1 π π2 cos sin .3 3z i ⎛ ⎞= +⎜ ⎟⎝ ⎠ 0,25 9.b (1,0 điểm) • Dạng lượng giác của là 2z 2 2π 2π2 cos sin .3 3z i ⎛ ⎞= +⎜ ⎟⎝ ⎠ 0,25 O H x y D A B C ---------- HẾT ----------
File đính kèm:
- DaToanB_Ct_DH_12[1].pdf