Đề Thi Chọn Học Sinh Giỏi Cấp Huyện Năm Học 2009-2010

Bài 4: (2.đ) Cho đường thẳng (d) có phương trình:

a) (0,5đ) Xác định m để đường thẳng (d) đi qua điểm P(-1;1).

b) (1,5đ) Chứng minh rằng khi m thay đổi thì đường thẳng (d) luôn luôn đi qua một điểm cố định.

Bài 5: (2 đ)

Cho ABC đều điểm M nằm trong ABC sao cho AM2 = BM2 + CM2. Tính số đo góc BMC ?

Bài 6: (4,0 đ)

Cho nửa đường tròn đường kính BC=2R, tâm O cố định. Điểm A di động trện nửa đường tròn. Gọi H là hình chiếu của điểm A lên BC. Gọi Dvà E lần lượt là hình chiếu của H lên AC và AB.

a) Chứng minh: AB . EB + AC . EH = AB2

b) Xác định vị trí điểm A sao cho tứ giác AEHD có diện tích lớn nhất? Tính diện tích lớn nhất đó theo R.

 

doc4 trang | Chia sẻ: hongmo88 | Lượt xem: 1490 | Lượt tải: 1download
Bạn đang xem nội dung tài liệu Đề Thi Chọn Học Sinh Giỏi Cấp Huyện Năm Học 2009-2010, để tải tài liệu về máy bạn click vào nút TẢI VỀ ở trên
PHÒNG GD-ĐT HUYỆN LONG ĐIỀN 	 KỲ THI CHỌN HỌC SINH GIỎI CẤP HUYỆN ------------------------------------------------	 NĂM HỌC 2009-2010
ĐỀ CHÍNH THỨC
 -------------------------
MÔN THI : TOÁN
Thời gian : 150 phút ( Không kể thời gian giao đề)
Ngày thi: 16/01/2010
Bài 1(4đ) 
Tính tổng: 
b) Cho a, b, c, d là các số dương và . Hãy trục căn thức ở mẫu của biểu thức sau:
Bài 2: (4đ)
 a) (2đ) Biết rằng a,b là các số thoả mãn a > b > 0 và a.b = 1 
Chứng minh : 
(2đ) Tìm tất cả các số tự nhiên có 3 chữ số sao cho : 
 với n là số nguyên lớn hơn 2
Bài 3: (4đ)
 a) (2đ) Phân tích thành nhân tử:
 	M = với 
b) (2đ) Giải phương trình
Bài 4: (2.đ) Cho đường thẳng (d) có phương trình: 
(0,5đ) Xác định m để đường thẳng (d) đi qua điểm P(-1;1).
(1,5đ) Chứng minh rằng khi m thay đổi thì đường thẳng (d) luôn luôn đi qua một điểm cố định.
Bài 5: (2 đ)
Cho ABC đều điểm M nằm trong ABC sao cho AM2 = BM2 + CM2. Tính số đo góc BMC ?
Bài 6: (4,0 đ) 
Cho nửa đường tròn đường kính BC=2R, tâm O cố định. Điểm A di động trện nửa đường tròn. Gọi H là hình chiếu của điểm A lên BC. Gọi Dvà E lần lượt là hình chiếu của H lên AC và AB. 
a) Chứng minh: AB . EB + AC . EH = AB2 
b) Xác định vị trí điểm A sao cho tứ giác AEHD có diện tích lớn nhất? Tính diện tích lớn nhất đó theo R.
----HẾT----
ĐÁP ÁN
Bài 1(4đ, mỗi bài 2 điểm)
a) 
(0,5 điểm)
(0,75 điểm)
(0,5 điểm)
(0,25 điểm)
 b) 
(0,5 điểm).
(0,5 điểm).
(0,5 điểm)
.
	 (0.5 điểm)	
Bài 2: 	( 2 điểm ) 
* Vì a.b = 1 nên ( 1 đ )
* Do a > b > 0 nên áp dụng BĐT Cô Si cho 2 số dương 
 Ta có : 
Vậy ( 1đ )
( 2 đđiểm ) 
Viết được 
Từ (1) và (2) ta có 99 ( a –c ) = 4n – 5 => 4n – 5 99 (3) ( 0,75 đ )
Mặt khác : 100 
	 (4) ( 0,75đđ )
Từ (3) và (4) => 4n – 5 = 99 => n = 26
Vậy số cần tìm ( 0,5 đ )
Bài 3(4đ) 
a) (2 điểm)	M = với 
	(0,25đ)
	(0,5đ)
	(0,5đ)
	(0,5đ)
	(0,25đ)
b) (2đ) Giải phương trình (1)
Ta nhận thấy x = 1 là nghiệm của PT (1) 	(0,75đ)
Với 	thì:
Nên PT vô nghiệm với 	(0,5đ)
Với x >1 Thì:
Nên PT vô nghiệm với x >1	(0,5đ)
Vậy PT (1) có nghiệm duy nhất x = 1	(0,25đ)
Bài 4: (2 điểm)
a) Vì đường thẳng (d) đi qua P(-1;1) nên 
 (0,5 điểm)
b) Gọi là tọa độ điểm cố định mà (d) đi qua 
Ta có: . (0,5đ)
Vậy điểm cố định mà (d) đi qua là (-1;2) (1đ)
Bài 5:
Vẽ tam giác đều CMN 	
 (1 điểm)
mà
 vuông tại M.
. (1 điểm)
Bài 6: (4,0 đ) 	
a) Chứng minh: AB . EB + AC . EH = AB2 
Chứng minh tứ giác ADHE là hình chữ nhật (1,0 đ)
AB . EB = HB2 
AC . EH = AC . AD = AH2
=> ĐPCM (1 điểm)
b) S(ADHE)= AD.AE (0,75 đ)
 S(ADHE) (0,75 đ)
Vậy Max S(ADHE)=Khi AD = AE 
Hay A là điểm chính giữa của cung AB (0,5 đ)

File đính kèm:

  • docDe thi Hoc sinh gioi Toan 9 va Dap an.doc
Bài giảng liên quan