Toán nâng cao lớp 5

Bài 74: Có 7 thùng đựng đầy dầu, 7 thùng chỉ còn nửa thùng dầu và 7 vỏ thùng. Làm sao có thể chia cho 3 người để mọi người đều có lượng dầu như nhau và số thùng như nhau ?

Bài giải: Gọi thùng đầy dầu là A, thùng có nửa thùng dầu là B, thùng không có dầu là C.

Cách 1: Không phải đổ dầu từ thùng này sang thùng kia.

Người thứ nhất nhận: 3A, 1B, 3C.

Người thứ hai nhận: 2A, 3B, 2C.

Người thứ ba nhận: 2A, 3B, 2C.

Cách 2: Không phải đổ dầu từ thùng này sang thùng kia.

Người thứ nhất nhận: 3A, 1B, 3C.

Người thứ hai nhận: 3A, 1B, 3C.

Người thứ ba nhận: 1A, 5B, 1C.

Cách 3: Đổ dầu từ thùng này sang thùng kia.

Lấy 4 thùng chứa nửa thùng dầu (4B) đổ đầy sang 2 thùng không (2C) để được 2 thùng đầy dầu (2A). Khi đó có 9A, 3B, 9C và mỗi người sẽ nhận được như nhau là 3A, 1B, 3C.

 

 

doc34 trang | Chia sẻ: dung1611 | Lượt xem: 2329 | Lượt tải: 1download
Bạn đang xem trước 20 trang tài liệu Toán nâng cao lớp 5, để xem tài liệu hoàn chỉnh bạn click vào nút TẢI VỀ ở trên
i ít nhất, Đông có số bi nhiều nhất và là số lẻ, Thu có số bi gấp 9 lần số bi của Hạ. Hãy cho biết mỗi bạn có bao nhiêu viên bi ?
Lời giải. 
+ Số bi của Thu gấp 9 lần số bi của Hạ nên tổng số bi của Thu và Hạ là một số chẵn. Tống số bi của bốn bạn là số lẻ, số bi của Đông là số lẻ, tổng số bi của Hạ và Thu là số lẻ ; do đó số bi của Xuân phải là số chẵn. 
+ Số bi của Hạ phải là số bé hơn 4 vì nếu số đó là 4 thì số bi của Thu là 4 x 9 = 36. Khi đó ít nhất Đông có số bi là 37 thì chỉ riêng tổng số bi của Thu và Đông đã vượt quá tổng số bi của bốn bạn (36 + 37 = 73 > 61). 
+ Nếu số bi của Xuân là 2 thì số bi của Hạ là 3, số bi của Thu là 27 
(3 x 9 = 27) 
Số bi của Đông là : 
61 - (2 + 3 + 27) = 29 (viên). 
Bài 134. Thay các chữ cái dưới đây bởi các chữ số (chữ cái khác nhau thì thay bởi các chữ số khác nhau) sao cho kết quả các phép tính dưới đây đạt giá trị lớn nhất. 
CHUC + MUNG + THAY + CO + NHAN + NGAY - 20 - 11
Lời giải. Vì N xuất hiện ở những hàng cao nhất và nhiều lần nhất nên N phải bằng 9 để kết quả lớn nhất. Tiếp đó C xuất hiện ở hàng cao nhất còn lại giống M và T nhưng C còn ở hai hàng khác nữa nên C bằng 8. Nếu M là 7 thì T là 6 và ngược lại, kết quả của phép toán không thay đổi. Với lập luận như trên thì H bằng 5, U bằng 4 và G là 3. Từ đó A bằng 2, Y bằng 1 và O là 0. 
Vậy ta có 2 đáp số : 
8548 + 6493 + 7521 + 80 + 9529 + 9321 - 20 - 11 = 41461 
và 8548 + 7493 + 6521 + 80 + 9529 + 9321 - 20 - 11 = 41461 
Bài 135 : Thăng đố Long biết được số học sinh của trường Thăng cuối năm học vừa rồi có bao nhiêu học sinh được nhận thưởng ? Biết rằng số học sinh được nhận thưởng là số có ba chữ số và rất thú vị là chữ số hàng trăm, chữ số hàng đơn vị giống nhau. Nếu nhân số này với 6 thì được tích là số cũng có ba chữ số và trong tích đó có một chữ số 2.
Bài giải : Gọi số phi tìm là aba(a khác b;a ; b nhỏ hoặc bằng 9). Theo đầu bài ta có:aba x 6 = deg (d khác 0 ; d; e; g nhỏ hơn hoặc bằng 9).Nếu a lớn hơn hoặc bằng 2 thì tích nhiều hơn 3 chữ số.Vậy a = 1. Ta có 1b1x 6 = deg ( deg có một chữ số 2).Do đó : g = 1 x 6 = 6 và d lớn hơn hoặc bằng 6. Vì thế : e = 2Vì b x 6 = nên b = 2 hoặc b = 7.Nếu b = 2 thì 121 x 6 = 726 (Đúng) Nếu b = 7 thì 171 x 6 = 1026 (Loại)Vậy số học sịnh nhận thưởng là 121 bạn.
Bài 136 : Em hãy di chuyển hai que diêm lại đúng vị trí để kết quả phép tính là đúng :
Bài giải :Cách 1 : Ta chuyển que diêm ở giữa chữ số 8 để có chữ số 0. Lấy que diêm đó 
ghép vào chữ số 5 của số 502 để được số 602. Lấy 1 que diêm ở chữ số 3 của số 2003 và đặt vào vị trí khác của chữ số 3 đó để chuyển số 2003 thành số 2002, ta có phép tính đúng :
Cách 2 : Ta chuyển que diêm ở giữa số 8 để có chữ số 0. lấy que diêm đó ghép vào chữ số 5 của số 502 để được số 602.Lấy 1 que diêm ở chữ số 2 của số 602 và đặt vào vị trí khác của chữ số 2 đó để chuyển số 602 thành số 603, ta có phép tính đúng :
Bài 137 : Một bạn chọn hai số tự nhiên tuỳ ý, tính tổng của chúng rồi lấy tổng đó nhân với chính nó. Bạn ấy cũng làm tưng tự đối với hiệu của hai số mà mình đã chọn đó. Cuối cùng cộng hai tích tìm được với nhau. Hỏi rằng tổng của hai tích đó là số chẵn hay số lẻ ? Vì sao ?
Bài giải : Sẽ xảy ra một trong hai trường hợp : C hai số đều chẵn (hoặc đều lẻ) ; một số chẵn và một số lẻ.a) Hai số chẵn (hoặc hai số lẻ). Tổng, hiệu của hai số đó là số chẵn. Số chẵn nhân với chính nó được số chẵn. Do đó cộng hai tích (là hai số chẵn) phải được số chẵn.b) Một số chẵn và một số lẻ. Tổng, hiệu của chúng đều là số lẻ. Số lẻ nhân với chính nó được số lẻ. Do đó cộng hai tích (là hai số lẻ) phải được số chẵn.Vậy theo điều kiện của bài toán thì kết quả của bài toán phải là số chẵn.
Bài 138 : a) Hãy phân tích 20 thành tổng các số tự nhiên sao cho tích các số tự nhiên ấy cũng bằng 20.b) Bạn có thể làm như thế với bất kì số tự nhiên nào được không ?
Bài giải : Phân tích 20 thành tích các số tự nhiên khác 1.20 = 2 x 2 x 5 = 4 x 5 = 10 x 2 Trường hợp : 2 x 2 x 5 = 20 thì tổng của chúng là : 2+ 2 + 5 = 9. Vậy để tổng bằng 20 thì phải thêm vào : 20 - 9 = 11, ta thay 11 bằng tổng của 11 số 1 khi đó tích sẽ không thay đổi. Lí luận tương tự với các trường hợp : 20 = 4 x 5 và 20 = 10 x 2. Ta có 3 cách phân tích như sau :Cách 1 :20 = 2 x 2 x 5 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1.20 = 2 + 2 + 5 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1.Cách 2 :20 = 4 x 5 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1.20 = 4 + 5 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1.
Cách 3 :
20 = 10 x 2 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1.20 = 10 + 2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1. b) Một số chia hết cho 1 và chính nó sẽ không làm được như trên vì tích của 1với chính nó luôn nhỏ hơn tổng của 1 với chính nó.
Bài 139 : Tìm số tự nhiên a nhỏ nhất sao cho a chia cho 2 dư 1, chia cho 5 dư 1, chia cho 7 dư 3 và chia hết cho 9.
Bài giải : Vì a chia cho 2 dư 1 nên a là số lẻ.Vì a chia cho 5 dư 1 nên a có tận cùng là 1 hoặc 6.Do đó a phải có tận cùng là 1.- Nếu a là số có hai chữ số thì do a chia hết cho 9 nên a = 81, loại vì 81 : 7 = 11 dư 4 (trái với điều kiện của đề bài).- Nếu a là số có ba chữ số thì để a nhỏ nhất thì chữ số hàng trăm phải là 1. Khi đó để a chia hết cho 9 thì theo dấu hiệu chia hết cho 9 ta có chữ số hàng chục phi là 7 (để 1 + 7 + 1 = 9 9).Vì 171 : 7 = 24 dư 3 nên a = 171.Vậy số phải tìm nhỏ nhất thỏa mãn điều kiện của đề bài là 171.
Bài 140 : Số này nằm trong phạm vi các số tự nhiên từ 1 đến 58. Khi viết "nó" không sử dụng các chữ số 1 ; 2 ; 3. Ngoài ra "nó" là số lẻ và không chia hết cho các số 3 ; 5 ; 7. Vậy "nó" là số nào ?
Bài giải : Nó là số lẻ nằm trong phạm vi các số tự nhiên từ 1 đến 58, khi viết nó không sử dụng các chữ số 1 ; 2 ; 3 nên nó có thể là : 5 ; 7 ; 9 ; 45 ; 47 ; 49 ; 55 ; 57 ; 59.Nhưng nó không chia hết cho 3 ; 5 ; 7 nên trong các số trên chỉ có số 47 là thỏa mãn.Vậy nó là số 47.
Bài 141 : Bạn Tân thực hiện phép chia một số cho 12 thì dư 1 và chia số đó cho 14 thì dư 2. Bạn hãy chứng tỏ Tân đã làm sai ít nhất một phép tính.
Bài giải : A = 12 x p + 1 = 14 x q + 2 (với p ; q là số tự nhiên)Ta thấy : 12 x p là số chẵn nên A = 12 x p + 1 là số lẻ.14 x q là số chẵn nên A = 14 x q + 2 là số chẵn.A không thể vừa lẻ vừa chẵn nên chắc chắn có ít nhất một phép tính sai.
Bài 142 : Vườn cây bà Thược có số cây chưa đến 100 và có 4 loại cây : xoài, cam, mít, bưởi. Trong đó số cây xoài chiếm 1/5 số cây, số cây cam chiếm 1/6 số cây, số cây bưởi chiếm1/4 số cây và còn lại là mít. Hãy tính xem mỗi loại có bao nhiêu cây ?
Bài giải : Số cây xoài chiếm 1/5 số cây, số cây cam chiếm 1/6 số cây, số cây bưởi chiếm 1/4 số cây nên số cây trong vườn phải chia hết cho 4, 5, 6. Mà 6 = 2 x 3 nên số cây trong vườn phải chia hết cho 3, 4, 5. Số nhỏ hơn 100 chia hết cho 3, 4, 5 là 60. Vậy số cây trong vườn là 60 cây.Số cây xoài trong vườn là : 60 : 5 = 12 (cây)Số cây cam trong vườn là : 60 : 6 = 10 (cây)Số cây bưởi trong vườn là : 60 : 4 = 15 (cây)Số cây mít trong Vườn là : 60 - (12 + 10 + 15) = 23 (cây)Đáp số : xoài : 12 cây ; cam : 10 cây ; bưởi : 15 cây ; mít : 23 cây
Bài 143 : Bạn hãy chia tấm bìa bên dưới thành 6 phần giống hệt nhau về hình dạng và mỗi phần có một bông hoa.
Bài giải : Ta chia tấm bìa thành các ô vuông nhỏ bằng nhau như trong hình vẽ sau :
Nhìn hình vẽ ta thấy tổng số ô vuông nhỏ là 18 ô. Do đó khi chia tấm bìa thành 6 phần giống hệt nhau về hình dạng thì mỗi phần sẽ có số ô là : 18 : 6 = 3 (ô) và hình dạng mỗi phần phải có dạng hình chữ L.Ta có cách chia như sau : (cắt theo đường màu)
Bài 144 : Cho dãy các số chẵn liên tiếp : 2 ; 4 ; 6 ; 8 ; ... ; 998 ; 1000.Sau khi điền thêm các dấu + hoặc dấu - vào giữa các số theo ý mình, bạn Bình thực hiện phép tính được kết quả là 2002 ; bạn Minh thực hiện phép tính được kết quả là 2006. Ai tính đúng ?
Bài giải : Từ 2 đến 1000 có : (1000 - 2) : 2 + 1 = 500 (số chẵn)Tổng các số đó : N = (1000 + 2) x 500 : 2 = 250500. Số này chia hết cho 4.Khi thay + a thành - a thì N bị giảm đi a x 2 cũng là số chia hết cho 4. Do đó 
kết quả cuối cùng phải là số chia hết cho 4. Bình tính được 2002, Minh tính được 2006 đều là số không chia hết cho 4. Vậy cả hai bạn đều tính sai.
Bài 145 : Trường Tiểu học Xuân Đỉnh tham gia hội khỏe Phù Đổng, có 11 học sinh đoạt giải, trong đó có 6 em giành ít nhất 2 giải, có 4 em giành ít nhất 3 giải và có 2 em giành mỗi người 4 giải. Hỏi trường đó đã giành được bao nhiêu giải ? 
Bài giải : Có 11 em đoạt giải, trong đó có 6 em giành ít nhất 2 giải nên số học sinh giành mỗi em 1 giải là : 11 - 6 = 5 (em). Có 6 em giành ít nhất 2 giải, trong đó có 4 em giành ít nhất 3 giải nên số em giành mỗi em 2 giải là : 6 - 4 = 2 (em). Có 4 em giành ít nhất 3 giải trong đó có có 2 em giành mỗi em 4 giải nên số em giành mỗi em 3 giải là : 4 - 2 = 2 (em). Số em giành từ 1 đến 4 giải là : 5 + 2 + 2 + 2 = 11 (em). Do đó không có em nào giành được nhiều hơn 4 giải. Vậy số giải mà trường đó giành được là : 1 x 5 + 2 x 2 + 3 x 2 + 4 x 2 = 23 (giải). 
Bài 146 : Tính nhanh tổng sau : 
Bài giải : Đặt tổng trên bằng A ta có : 
Bài 147 : Tìm số tự nhiên a để biểu thức : A = 4010 - 2005 : (2006 - a) có giá trị nhỏ nhất. 
Bài giải : Để A có giá trị nhỏ nhất thì số trừ 2005 : (2006 - a) có giá trị lớn nhất không vượt quá 4010. Để 2005 : (2006 - a) có giá trị lớn nhất thì số chia (2006 - a) có giá trị nhỏ nhất lớn hơn 0. 
Vậy 2006 - a = 1 
a = 2006 - 1 
a = 2005. 
Bài 148 : Một lớp có 29 học sinh. Trong một lần kiểm tra chính tả. bạn Xuân mắc 9 lỗi, còn các bạn trong lớp mắc ít lỗi hơn. Chứng minh rằng : Trong lớp có ít nhất 4 bạn có số lỗi bằng nhau (kể cả trường hợp số lỗi bằng 0). 
Bài giải : Vì các bạn trong lớp đều có ít lỗi hơn Xuân, nên các bạn chỉ có số lỗi từ 0 đến 8. Trừ Xuân ra thì số bạn còn lại là : 29 - 1 = 28 (bạn). Nếu chia các bạn 
còn lại thành các nhóm theo số lỗi thì tối đa có 9 nhóm. Nếu mỗi nhóm có không quá 3 bạn thì 9 nhóm sẽ có không quá 3 x 9 = 27 (bạn). Điều này mâu thuẫn với 
số bạn còn lại là 28 bạn. Chứng tỏ ít nhất phải có một nhóm có quá 3 bạn tức là trong lớp có ít nhất có 4 bạn có số lỗi bằng nhau. 

File đính kèm:

  • docToan nang cao 5 part 2.doc
Bài giảng liên quan